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With rising global ocean temperatures, species distributions are tracking thermally 10 
adapted temperatures towards historically cooler regions1,2. Given warming and different 11 
species responses to changed temperatures and presence of other species, predicting the 12 
redistribution and relative abundance of biodiversity remains a challenge 3,4. Here we use 13 
long-term fish and plankton survey data over the last three decades to assess the extent to 14 
which the relative dominance of warm-affinity and cold-affinity species changes with 15 
warming5,6. Warming is accompanied by strong shifts towards dominance by warm-water 16 
species (North Atlantic), while regions with stable temperatures show very little change in 17 
dominance structure (Northeast Pacific, Gulf of Mexico). Importantly, communities whose 18 
species pools had diverse thermal affinities and narrower thermal tolerance ranges showed 19 
greater sensitivity to temperature change, as anticipated from simulations. Composition of 20 
fish communities changed less than expected in regions with strong depth gradients in 21 
temperature. Species in these communities can track temperatures by moving deeper2,7, 22 
rather than horizontally, in an analogous way to upward shifts in elevation in land plants8. 23 
Temperature thus emerges as a fundamental driver for change in marine systems, with 24 
predictable restructuring of communities in the most rapidly warming areas using metrics 25 
based on species thermal affinities derived for diverse taxa, predicting differing community 26 
responses to climate. The relationships emerging from simulations and observations give 27 
strong expectations and a metric for assessments of predictions of from biodiversity 28 
models. That shifts in dominance occur so readily and predictably suggests that a strong 29 
prognosis of resilience to climate change for these communities.  30 

Abundance and distributions of marine species are changing in response to anthropogenic 31 
climate change1 but these changes vary geographically and across taxa. Shifts in geographical 32 
range and temporal species turnover, for example, tend to be accelerated where temperature 33 
changes coincide with widely spaced isotherms1,2. Unlike terrestrial ecosystems, marine species 34 
may be unable to shelter from extreme temperatures, making the effect of ambient temperature 35 
immediate, unavoidable, and easier to detect. Local gain and loss of species, combined with 36 
changes in the relative abundance of species with different thermal affinities, drive change in 37 
community structure. On land, failure of species distributions to track temperature means that 38 
community thermal composition lags behind expected change, seen in communities of birds, 39 
butterflies, and plant species 5,9-14. Identifying the aspects of community change that can be 40 
accurately forecasted is needed to assist managers to adaptively deal with ecosystem change.  41 
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Data Availability Statement 314 

The Community Temperature Index (CTI) values and species thermal affinity data that support 315 
the findings of this study are available in figshare with the identifiers 316 
https://doi.org/10.6084/m9.figshare.9699068 for annual values and 30 year means (Extended 317 
Data Fig. 7), https://doi.org/10.6084/m9.figshare.9699107 for trends in 2° × 2° grid cells (Figs 2, 318 
3, Extended Data Fig. 5), and https://doi.org/10.6084/m9.figshare.6855203.v1 for species 319 
thermal affinities. Source data for the analyses presented are available at links given in the 320 
supplementary information files. Source code for the simulation of CTI response to temperature 321 
change is available at https://github.com/michaeltburrows/ctisimulation (Fig. 1). 322 
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Fig. 1 | Simulated communities to illustrate the effects of thermal diversity and thermal 328 
range width on the sensitivity of Community Temperature Index (CTI) to temperature 329 
change. a, a Gaussian abundance-temperature distribution for Species Temperature Index (STI) 330 
= 15 and Species Thermal Range (STR) = 10. b, quantiles (a50 = 50th percentile etc.) of 331 
abundance across thermal ranges for US trawl survey species. c-f, Thermal characteristics in 332 
simulated pools of species varying in thermal diversity and thermal range, showing subsets 333 
forming communities at 15oC mean annual sea temperature. g, Sensitivity of Community 334 
Temperature Index (sCTI, the ratio of CTI change to temperature change), plotted against 335 
Community Thermal Diversity (CTDiv) for simulated communities. Numbers show the thermal 336 
diversity in the species pool (standard deviation of STIs, same values shown by coloured 337 
symbols joined by grey lines) and the species thermal range (same values joined by black lines). 338 
Letters in g indicate the sensitivity of CTI associated with thermal diversity and thermal ranges 339 
in the example communities shown in c-f.  340 

 341 

 342 

  343 
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   344 
 345 

Fig. 2 | Trends in temperature and composition of demersal and plankton communities 346 
shown by Community Temperature Index (CTISST) values from 1985 to 2014. a, Trend in 347 
sea surface temperature (SST) from the Hadley Centre Sea Ice and Sea Surface Temperature data 348 
set (HadISST v1) where blue is colder and red warmer. b, as (a) aggregated into the 2° × 2° 349 
latitude-longitude grid cells surveyed for plankton and demersal fish. c, Trends in CTISST for 350 
bottom trawls, and d, for Continuous Plankton Recorder hauls. e, CTISST trends compared with 351 
SST trends. CTI trends are shown as bootstrap averages and standard deviations of computed 352 
regression slopes over time (n=500 using random selection of species with replacement). SST 353 
trends are shown as regression slopes ± standard errors. Symbol sizes are scaled by the number 354 
of years sampled, while colours denote the survey programme (black, CPR, Continuous Plankton 355 
Recorder; red, DFO, Department of Fisheries and Oceans, Canada; green, IBTS, International 356 
Bottom Trawl Survey; blue, NMFS, US National Marine Fisheries Service). The dependence of 357 
CTISST trend on SST trends per gridcell is shown by two regression slopes ± 95% confidence 358 
intervals: with an intercept term (solid line with grey shading, Model A, R2=0.08) and without 359 
(line with red shading, Model B, R2=0.23, Extended Data Table 4). 360 

 361 

  362 
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sensitivity on log STR (=CTR in this case, since all species in the simulation had the same STR) 594 
and CTDiv gave a perfect fit with coefficients of -2 and 2 respectively, which back transforms 595 
from logs to the one-parameter equation involving the squared ratio of CTDiv to CTR (Model 596 
Z). 597 

Adding the interactive effect of thermal diversity (CTDiv) to SST trend (dSST) produced a 598 
better model (Model D vs B, AICcD - AICcB = -63.90), while adding thermal range (CTR) alone 599 
did not (Model C vs B, AICcC - AICcB = -2.52). Including both factors, either as linear predictors 600 
(E) or squared terms (F), further improved the model (Model E vs B, AICcE - AICcB = -82.62; 601 
Model F vs B, AICcF - AICcB = -77.03). Thermal diversity was negatively correlated with 602 
inverse thermal range width, resulting in large changes in parameter values when each factor was 603 
added to a model containing the other. The squared-ratio model (CTDiv2:CTR2), Model G, 604 
equivalent to the model fitted to simulation data (Z), had similar explanatory power to other 605 
models including those terms (E, F). The parameter value for this model (G, 7.63) was close to 606 
the 6.54 obtained for simulated communities (Z).  607 

Thermal bias affected CTI sensitivity in the simulations, negatively or positively depending 608 
on the direction of skew of the abundance-temperature relationship, and so was introduced as an 609 
addition to the squared ratio model. Adding thermal bias slightly improved model fit (Model H 610 
vs G, AICcH - AICcG = -1.18) and increased the sensitivity of CTI by 0.04 for each °C of thermal 611 
bias. This positive effect meant that communities comprising warm-water species showed greater 612 
change in CTI than those composed of cold-water species for the same change in temperature. 613 
The effect was also consistent with the effect of realized right-skewed (gamma) abundance-614 
temperature distribution in the simulations, but not a left-skewed one as implied by typical 615 
physiological thermal performance curves35.  616 

Both horizontal and vertical gradients in temperature were expected to influence CTI 617 
sensitivity. Steep vertical gradients in temperature may have a negative effect on CTI sensitivity 618 
because species may be able to shift to cooler temperatures in the same area by moving deeper. 619 
Gentle horizontal gradients in temperature, combined with temperature change through time, 620 
result in higher velocities of climate and thereby more rapid distribution shifts among species2,18. 621 
With a greater rate of species turnover in areas of high climate velocity, we expected a negative 622 
relationship between CTI sensitivity and the magnitude of the horizontal gradient in temperature. 623 
Adding shallow vertical temperature differences (surface less 50m) improved the model with 624 
community thermal diversity and thermal range (Model I vs G, AICcI - AICcG = -33.39), albeit 625 
with no effect of vertical differences from surface to 100m (Model J) or 200m depth (Model K). 626 
Adding horizontal temperature gradient (Model L) to the basic model (G) had a smaller effect on 627 
model fit (AICcL - AICcG = -3.15) and did show the expected negative influence of the 628 
horizontal gradient. Combining vertical and horizontal gradients in temperature (Model M) did 629 
not improve model fit, and the horizontal gradient coefficient did not differ from zero. A 630 
regression model that included thermal bias effects as well as horizontal and vertical gradients in 631 
temperature (Model N) was the most parsimonious, albeit with the parameter for horizontal 632 
gradient not significantly different from zero. Residuals from the squared-ratio model proved to 633 
be related most strongly to the effect of vertical temperature gradient (Model R1, Fig. 3b).  634 

Cross validation of was used to examine the predictive skill of Model I (Extended Data 635 
Table 4, Extended Data Fig. 12). We used dataset type (bottom trawls or plankton) and latitude 636 
and longitude (giving contiguous spatial blocks) to split the data into near similar-sized training 637 
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and test datasets, with each set alternately used as the training set for the other test set of data. 638 
Choices of splits for latitude (50°N) and longitude (40°W) were arbitrary, but adopted to produce 639 
adequately sized datasets for fitting. Model I fitted to the plankton subset as training data (Model 640 
Icpr) and bottom-trawl subsets (Model Idem) produced similar parameter estimates (significant 641 
P<0.05), with CTI trends for bottom trawls explained markedly better. Splitting into plankton 642 
and demersal species gave the worst fits to the other as test data (CV rsme 0.0284), the plankton 643 
training set predicting larger CTI trends than the bottom-trawl training set. Splitting by latitude 644 
and longitude gave similar root mean squared errors to the plankton / bottom-trawl split 645 
(Extended Data Table 4), but produced non-significant parameter estimates for the vertical 646 
temperature gradient term for data west of 40°W. Model residuals for Model I showed some 647 
spatial structure (Extended Data Fig. 12a), with evidence for spatial autocorrelation in the CTI 648 
trends and in the predictor variables (Extended Data Fig. 12b-c). 649 

Of all predictors tested beyond the effects of thermal diversity and thermal range, the 650 
vertical temperature gradient effect had the largest influence on CTI sensitivity, (Fig. 3f). The 651 
apparent positive effect of thermal bias was due to the negative association with vertical gradient 652 
for demersal species (Fig. 3a), and the small negative effect of horizontal gradient was due to the 653 
weak positive association of vertical and horizontal gradients of temperature, particularly in the 654 
northwest Atlantic.  655 

Evaluation of explanatory power of alternate sea temperature datasets in explaining spatial 656 
variation in trends in CTI anomalies 657 

We fitted a subset of regression models in Extended Data Table 4 to every combination of 658 
four variants of CTI and temperature trends from nine dataset layers: five surface layers 659 
(EN4SST, COBESST, ERSST, HadISST and OISST, Extended Data Fig. 13) and four 660 
subsurface layers (EN4SBT, EN4 50m depth, EN4 100m depth and EN4 200m depth). Models 661 
were fitted for every bootstrap selection of species (n=500), with model fits and 95% bootstrap 662 
confidence intervals shown in Extended Data Fig. 14. The most variation in CTI was explained 663 
for CTISST from STIs obtained by matching modelled species distributions to surface temperature 664 
(aCTIen4sst and aCTIhadsst1), with the poorest performance of models fitted to CTISST from 665 
STIs obtained by matching 1° mapped observations of species presence in gridcells (from OBIS 666 
data summed for the period 1960 to 2009) to surface temperatures (aCTIhadsst2). Trends in 667 
seabed temperatures did least well in terms of adjusted R2 at predicting CTISBT or CTISST. 668 
Models that included terms for the squared ratio of thermal diversity to range width fitted better 669 
when in combination with magnitude of vertical gradient and/or horizontal gradient.  670 

 671 

Data availability 672 
The data that support the findings of this study are available at the publicly accessible 673 
repositories listed in Extended Data Table 1. 674 

 675 
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Extended Data Table 3. Summary of effects of types of abundance-temperature relationships on 
sensitivity of CTI to temperature change (sCTI) based on linear regression. Values shown are 
regression coefficients (± standard errors). A full list of parameter estimates is given in Extended 
Data Table 5. 

 
Model Functional 

type 
Plot log10 

(CTDIV) 
log10 (STR) Thermal bias sdSTR / Shape 

(parameter ranges) 
 

(1 to 15) (2 to 20 by 2) (-5 to 5 by 1) 
 

Z Gaussian Fig. 1f 2.00 -2.00 0.00 
 

   
(1 to 15) (4 to 12 by 2) (-5 to 5 by 1) (sdSTR: 0.001, 1 to 4) 

Z1 Gaussian 
plus 
variable 
STR 

Extended 
Data Fig. 
2a 

2.00 -2.00 Sensitivity 
declines as 
thermal bias 
increases 

sdSTR: Negative effect. 
CTI sensitivity (sCTI) 
declines as variation in 
STR increases. Interacts to 
reduce negative STR effect 
as variability in STR 
increases, but has little 
influence on the effect of 
thermal diversity. 

Z2 Trimmed 
Gaussian 

Extended 
Data Fig. 
2b 

1.93 0, Effect of 
thermal 
range width 
is removed 

Negligible 
 

   
(1 to 15) (4 to 12 by 2) (-5 to 5 by 1) (Shape: 1 to 4) 

Z3 Gamma 
(right-
skewed) 

Extended 
Data Fig. 
2c, 2d 

0.97 
(0.05) 

-1.03 (0.05) Positive, 
sensitivity 
increases 
with thermal 
bias 

Shape: >1 increases 
sensitivity. Increases 
positive effects of thermal 
diversity and negative 
effects of thermal range 
width towards the Gaussian 
values (+2 and -2) 

Z4 Reversed 
gamma 
(left-
skewed) 

Extended 
Data Fig. 
2e, 2f 

0.92 
(0.05) 
(shape 1) 

-1.01 (0.05) Negative, 
sensitivity 
declines with 
thermal bias 

Shape: >1 increases 
sensitivity. Increases 
positive effects of thermal 
diversity and negative 
effects of thermal range 
width towards the Gaussian 
values (+2 and -2) 
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. 13 
Extended Data Table 4 (continued) | Regression models fitted to CTI trends. Models shown here (Ci to Ni) are the same as C to N above with added 14 
intercept terms to allow a non-zero change in CTI for zero change in temperature. 15 

  16 
Values in parentheses give the parameter estimate for the squared value of the community thermal metric (dSST x CTDiv2, dSST x invCTR2). § denotes 17 
coefficients not significantly different from zero at P<0.05. 18 
 19 
 20 

M# Description �4AICc

Model 
weight, 

w R²
Adj 
R² Intercept dSST

dSST x  
CTDiv(^2)

dSST x  
CTDiv² x 
invCTR²

dSST x  
invCTR(^2)

dSST x  
mnsg

dSST x  
slessdeep

dSST x  
thermbias

Ci Thermal Range width 83.90 0.00 0.10 0.09 0.002 ± 0.004§ 1.11 ± 0.35 -8.74 ± 4.55§
Di Thermal diversity 22.68 0.00 0.32 0.31 -0.001 ± 0.003§ -1.32 ± 0.23 0.43 ± 0.05
Ei Thermal range plus thermal diversity 3.75 0.11 0.38 0.37 0.002 ± 0.003§ -3.78 ± 0.57 0.62 ± 0.06 23.04 ± 4.94
Fi as squared terms 8.98 0.01 0.37 0.36 0.003 ± 0.003§ -1.66 ± 0.31 (0.07 ± 0.01) (153.66 ± 35.26)
Gi combined 35.43 0.00 0.27 0.27 -0.002 ± 0.003§ 7.99 ± 0.90
Hi Thermal bias effect 33.41 0.00 0.28 0.28 -0.003 ± 0.003§ 7.97 ± 0.89 0.04 ± 0.02
Ii Vertical gradient effects:  using 50m 0.68 0.32 0.39 0.38 0.004 ± 0.003§ 10.59 ± 0.92 -0.17 ± 0.03
Ji 100m 165.17 0.00 0.33 0.32 0.005 ± 0.003§ 11.19 ± 1.22 -0.16 ± 0.03
Ki 200m 348.93 0.00 0.13 0.12 0.003 ± 0.004§ 7.08 ± 1.79 -0.03 ± 0.05§
Li Horizontal gradient effect 32.66 0.00 0.29 0.28 0.000 ± 0.003§ 8.86 ± 0.97 -18.47 ± 8.36

Mi Vertical plus horizontal gradient effects 1.20 0.27 0.39 0.38 0.004 ± 0.003§ 10.38 ± 0.94 11.75 ± 9.26§ -0.19 ± 0.03

Ni Thermal bias, combined with vertical 
gradient effects 1.57 0.30 0.39 0.38 0.002 ± 0.003§ 10.27 ± 0.94 12.67 ± 9.27§ -0.19 ± 0.03 0.02 ± 0.02§

R1 Residual from Model G vs vertical and 
horizontal gradients and thermal bias

0.14 0.12 0.020 ± 0.006 0.759 ± 0.468§ -0.010 ± 
0.002

-0.0003 ± 
0.0008§
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Extended Data Table 5. Parameter estimates from linear regression analysis of CTI sensitivity (log10 21 
transformed) in simulated communities using different types of abundance-temperature functions (see Extended 22 
Data Fig. 1). Results are summarised in Extended Data Table 3, including the ranges of input parameters. 23 
Abbreviations: CTDiv, Community Thermal Diversity; CTR, Community Thermal Range; sdSTR, standard 24 
deviation in Species Thermal Range; thermbias, Thermal Bias; shape, gamma shape parameter. Interactions are 25 
denoted by x between two terms. 26 
 27 
 28 

Model Z1, Adjusted R2 = 0.9243. Gaussian function with variable STR 

Term Estimate 
Std. 

Error t value 
Intercept 0.786 0.018 44.24 
log10(CTDiv) 1.998 0.022 88.90 
log10(CTR) -1.997 0.025 -80.05 
sdSTR = 1 -0.058 0.024 -2.39 
sdSTR = 2 -0.167 0.024 -6.87 
sdSTR = 3 -0.222 0.025 -8.74 
sdSTR = 4 -0.161 0.027 -5.88 
thermbias = -4 0.013 0.006 2.02 
thermbias = -3 0.025 0.006 4.02 
thermbias = -2 0.038 0.006 6.06 
thermbias = -1 0.052 0.006 8.25 
thermbias = 0 0.058 0.006 9.16 
thermbias = 1 0.053 0.006 8.41 
thermbias = 2 0.036 0.006 5.64 
thermbias = 3 0.021 0.006 3.35 
thermbias = 4 0.013 0.006 2.01 
thermbias = 5 0.003 0.006 0.41 
log10(CTDiv) x sdSTR = 1 0.023 0.032 0.73 
log10(CTDiv) x sdSTR = 2 0.094 0.031 2.98 
log10(CTDiv) x sdSTR = 3 0.285 0.031 9.15 
log10(CTDiv) x sdSTR = 4 0.237 0.031 7.61 
log10(CTR) x sdSTR = 1 0.046 0.035 1.31 
log10(CTR) x sdSTR = 2 0.113 0.035 3.26 
log10(CTR) x sdSTR = 3 0.056 0.035 1.59 
log10(CTR) x sdSTR = 4 -0.004 0.037 -0.11 
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Model Z2, Adjusted R2 = 0.9907. Trimmed Gaussian function 

Term Estimate 
Std. 

Error t value 
Intercept -1.370 0.007 -200.94 
log10(CTDiv) 1.930 0.005 351.15 
log10(CTR) -0.001 0.005 -0.18 
thermbias = -4 0.003 0.005 0.53 
thermbias = -3 0.000 0.005 -0.09 
thermbias = -2 -0.013 0.005 -2.57 
thermbias = -1 -0.016 0.005 -3.38 
thermbias = 0 -0.004 0.005 -0.90 
thermbias = 1 -0.009 0.005 -1.78 
thermbias = 2 -0.009 0.005 -1.80 
thermbias = 3 -0.008 0.005 -1.65 
thermbias = 4 0.001 0.005 0.21 
thermbias = 5 -0.004 0.005 -0.81 

Model Z3, Adjusted R2 = 0.6681. Gamma abundance-temperature function 

Term Estimate 
Std. 

Error t value 
Intercept 0.213 0.040 5.34 
log10(CTDiv) 0.974 0.048 20.40 
log10(CTR) -1.029 0.054 -19.22 
thermbias = -4 0.025 0.016 1.58 
thermbias = -3 0.053 0.016 3.31 
thermbias = -2 0.084 0.016 5.13 
thermbias = -1 0.113 0.017 6.64 
thermbias = 0 0.145 0.018 8.09 
thermbias = 1 0.187 0.019 9.87 
thermbias = 2 0.225 0.020 11.25 
thermbias = 3 0.270 0.021 12.70 
thermbias = 4 0.308 0.023 13.69 
thermbias = 5 0.345 0.024 14.43 
shape = 2 0.331 0.052 6.35 
shape = 3 0.375 0.052 7.16 
shape = 4 0.392 0.052 7.47 
log10(CTDiv) x shape = 2 0.823 0.064 12.90 
log10(CTDiv) x shape = 3 0.912 0.066 13.88 
log10(CTDiv) x shape = 4 0.942 0.066 14.20 
log10(CTR) x shape = 2 -0.768 0.073 -10.48 
log10(CTR) x shape = 3 -0.849 0.074 -11.43 
log10(CTR) x shape = 4 -0.879 0.075 -11.76 
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Model Z4, Adjusted R2 = 0.6818: Reversed gamma function 

Term Estimate 
Std. 

Error t value 
Intercept 0.563 0.039 14.53 
log10(CTDiv) 0.924 0.047 19.53 
log10(CTR) -1.020 0.052 -19.44 
thermbias = -4 -0.036 0.015 -2.39 
thermbias = -3 -0.074 0.015 -4.85 
thermbias = -2 -0.120 0.016 -7.58 
thermbias = -1 -0.151 0.017 -9.12 
thermbias = 0 -0.194 0.017 -11.15 
thermbias = 1 -0.220 0.018 -11.93 
thermbias = 2 -0.264 0.019 -13.54 
thermbias = 3 -0.294 0.021 -14.22 
thermbias = 4 -0.313 0.022 -14.26 
thermbias = 5 -0.346 0.023 -14.88 
shape = 2 0.338 0.051 6.67 
shape = 3 0.368 0.051 7.23 
shape = 4 0.383 0.051 7.50 
log10(CTDiv) x shape = 2 0.954 0.064 15.03 
log10(CTDiv) x shape = 3 0.995 0.065 15.35 
log10(CTDiv) x shape = 4 1.005 0.065 15.38 
log10(CTR) x shape = 2 -0.834 0.072 -11.61 
log10(CTR) x shape = 3 -0.878 0.073 -12.07 
log10(CTR) x shape = 4 -0.895 0.073 -12.25 
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 33 
 34 

Extended Data Fig. 1. | Forms of abundance-temperature relationships used in simulations of 35 
CTI sensitivity to changes in temperature: a, Gaussian; b, trimmed Gaussian; c, right-skewed 36 
gamma distribution; d, left-skewed gamma distribution. Curves are shown for STI = 15°C and for STR 37 
= 10 using gamma shape = 1.5 for c and d. 38 




























