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Abstract   

Pollicipes pollicipes (Crustacea; Pedunculata) is a delicacy on the Iberian Peninsula 

where, in recent years, stock shortages associated with high market value have increased 

interest in the aquaculture potential of this species. Though broodstock has been 

maintained in captivity, detailed culture conditions are lacking. The present study 

investigated the effects of rearing temperature on reproductive conditioning. During a 4-

week period, broodstock were subjected to temperature regimes characteristic of stable 

spring temperatures (spT), increasing spring to summer temperatures (sp-suT) and 

increasing spring to summer temperatures with daily fluctuations of 1 ºC (sp-suT2). 

Broodstock were monitored for fecundity, egg lamella development and maturation, 

larval release rate, nauplius size and survival over 24 h. Cultured broodstock were 

fecund at smaller sizes (15.94 ± 0.23 mm RC) than wild-collected individuals at the 

beginning of the experiment (17.71 ± 0.65 mm RC). Fecundity increased significantly 

in all treatments and development of egg lamellae was highest in treatments in which 

the temperature increased over the experimental period (average 36% of mature egg 

lamellae in comparison to an initial 0%). Increasing temperature led to greater 

maturation of lamellae and more frequent spawning peaks. The number of nauplii 

released per aquarium (average 110 adult individuals) varied according to treatment and 

time, averaging 4670 ± 506 nauplii day-1. Due to the low number of larvae released 

daily, it is suggested that adults might release larvae gradually, as embryos hatch within 

the mantle cavity. Average release rates increased towards the end of the conditioning 

period, with releases on peak days ranging from 10000 to 30000 nauplii per aquarium. 

For spT, peak values were observed in week 3, while sp-suT and sp-suT2 showed peaks 

of release in weeks 2 and 4, when temperatures averaged 20 and 23 ºC, respectively. 

Temperature oscillations led to shorter intervals between peaks of release. In terms of 
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the larvae released, there were neither differences in numbers between treatments 

(128147 ± 13548 nauplii per aquarium over 28 days) nor in size of nauplii (202.89 ± 

0.69 µm GW) or 24-h survival (91.56 ± 0.35%). Notwithstanding the need for further 

optimization, broodstock reproductive conditioning can be accomplished and a 

continuous supply of larvae obtained using the protocols described herein. Future 

studies should focus on the impact of food quality and photoperiod on reproductive 

conditioning, as well as the optimization of larval release induction protocols. 

 

Keywords: Reproduction; barnacles; larva; aquaculture; temperature. 

 

1. Introduction 

Pollicipes pollicipes is a high-value barnacle species, historically subject to an 

intensive fishery (e.g. Freire and Garcia-Allut, 2000; Molares and Freire, 2003; Bald et 

al., 2006; Borja et al., 2006b; Jacinto et al., 2010). In recent years, growing concerns 

over depletion of natural stocks and the consequent stock protection measures (e.g. 

Borja et al, 2000, 2006a, 2006b; Castro, 2004; Jacinto et al., 2010) have increased 

interest in the potential of this species for aquaculture. However, there are few 

published reports that relate to culture conditions of P. pollicipes (e.g. Molares et al., 

1994; Candeias, 2005; Cribeiro, 2007) and, as such, much remains unknown regarding 

broodstock conditioning, larval culture, settlement and juvenile grow-out.  

P. pollicipes is found in clusters on the Atlantic coast from France to Senegal, in 

intertidal areas exposed to strong wave action (Stubbings, 1967; Barnes, 1996). These 

simultaneous hermaphrodites brood their developing embryos inside the mantle cavity 

(e.g. Molares, 1994; Cruz, and Araújo, 1999; Cruz, 2000; Pavón, 2003), until nauplii are 

released into the water column. Adults have been reported to produce approximately 
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30000 – 130000 embryos per batch and release asynchronously 1 to 5 batches per year 

during the breeding period from May to October (e.g. Cardoso and Yule, 1995; Cruz 

and Hawkins, 1998; Pavón, 2003; Macho, 2006).  

Control over reproduction of P. pollicipes is essential for sustainable commercial 

aquaculture, allowing the extension of the production season by assuring the provision 

of larvae for culture and reducing the reliance on natural reproductive cycles. Embryos 

that are ready to hatch can be extracted from the adults in a process whose yield 

depends largely upon seasonal larval production, the synchrony of gonad development 

and individual egg lamella maturation. Other seedstock provision alternatives, such as 

from planktonic samples, are unreliable, due to the difficulty in quickly separating 

larvae to species, and artificial insemination appears to have limited potential for stalked 

barnacles (Walley et al., 1971; Lewis, 1975a; Qui et al., 1994). However, in spite of 

reports of broodstock maintenance and breeding in captivity (e.g. Kugele and Yule, 

1996; Candeias, 2005; Cribeiro, 2007), detailed culture conditions and spawning 

frequencies are lacking.  

For P. pollicipes in the wild, the effects of temperature on reproduction are hard to 

dissociate from latitude (e.g. Cruz, 2000) or seasonal food abundance (e.g. Molares, 

1994; Cardoso and Yule, 1995; Cruz and Hawkins, 1998; Cruz and Araújo, 1999; 

Pavón, 2003), although temperature-regulated reproduction has been verified for P. 

pollicipes (Cardoso and Yule, 1995; Cruz and Hawkins, 1998). Studies on closely 

related P. polymerus in the wild have indicated that gonadal development and 

maturation are controlled more by temperature than by food (e.g. Cimberg, 1981; Page, 

1983).  

Previous reports from Candeias (2005) and Kugele and Yule (1996) with P. 

pollicipes broodstock strongly suggest that mating and spawning can be achieved in 
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captivity. However, spawning was sparse and collection of larvae sporadic. Other field 

studies on the species have focused on the timing of larval release in natural populations 

(e.g. Macho et al., 2005) and suggest that tidal cycle and photoperiod might be 

necessary triggering factors for spawning. Further observations in captivity on 

Pollicipes polymerus (Lewis, 1975b) support feeding as an inducer to the release of 

nauplii, as also seen in the well-studied annual breeder Semibalanus balanoides.  

In addition, no studies involving rearing of P. pollicipes have imposed strict 

temperature controls or closely monitored the adult reproductive condition and larval 

quality (e.g. Cribeiro, 2007; Kugele and Yule, 1996). Further research into the effects of 

environmental factors on broodstock reproduction in captivity is warranted. Water 

temperature on the Atlantic coast of Portugal and Spain, where P. pollicipes is found, 

varies from 10 to 24 ºC, according to location and season (Instituto Hidrográfico, 2012; 

Meteo Galicia, 2012; Euskalmet, 2012) and its breeding period extends from March to 

September (e.g. Cardoso and Yule, 1995; Cruz and Hawkins, 1998; Pavón, 2003; 

Macho, 2006), which also coincides with the period of increased food abundance in the 

wild (e.g. Fiuza et al., 1982). Since elevated rearing temperatures are often used to 

induce reproduction in various cultured marine invertebrate species (e.g. bivalves; 

Loosanoff and Davies, 1950; Sastry, 1966) it is hypothesised here that this might also 

be appropriate to P. pollicipes.  

The aim was to investigate the use of temperature for the reproductive 

conditioning of P. pollicipes and as a triggering factor for spawning in captivity, as well 

as establishing a viable reproductive conditioning protocol for this species. This study 

focuses on the effect of rearing temperature on the reproductive development of P. 

pollicipes broodstock by following fecundity index, egg lamella development index, 

release patterns, total number of nauplii released, their size and survival. Other factors, 
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such as adult growth and survival, were also monitored due to their relevance for 

assessment of reproductive fitness.  

 

2. Materials and Methods 

2.1. Stock collection and acclimatization 

Clusters of P. pollicipes were collected from Cabo Sardão (37°36'24.70", -8°49'2.00", 

Portugal; 25th  April, 2013) and transported in air within 3 h to the Ramalhete 

Aquaculture Station at the Centro de Ciências do Mar (37º00’22.39’’N; 7º58’02.69’’W, 

Faro, Portugal). Individuals were acclimated in aquaria for 14 days to stabilize mortality 

rates and adjust to the artificial feeding regime. During acclimatization (from 25th April 

to 8th of May, 2013) the clusters were kept in identical recirculating conditions of 16.3 ± 

0.3 ºC and 36.6 ± 0.4 ppt. Prior to the experiment, clusters of barnacles of  ≥ 5.0 mm 

rostro-carinal distance (RC) were weighed, photographed (Olympus © E-410) and 

counted. They were then mapped photographically within each cluster and measured for 

RC and stalk length (SL), using digital callipers. Clusters were assigned to particular 

groups with similar size-related population structures (adults with RCs ≥ 12.5 mm and 

juveniles with RCs of 5.0 - 12.55 mm), similar numbers and biomass. 

2.2. Reproductive conditioning experiments 

Barnacles were separated into 9 groups (146 ± 13 barnacles; 15.34 ± 4.76 mm RC; 

mean ± SD), of similar size-related population structures (11.81 ± 2.09 % 5.0 ≤ RC < 

10.0 mm, 16.66 ± 2.57 % 10.0 ≤ RC < 12.5 mm, 53.71 ± 3.03 % 12.5 ≤ RC < 15.0 mm, 

and 29.63 ± 3.05 % RC ≥ 15.0 mm; mean ± SD) and distributed across 3 recirculating 

systems (each with 3 x 60 L aquaria; 1 group per aquarium). Over the following 4 

weeks (from May 9th to June 6th, 2013), they were subjected to different temperature 

regimes. Temperature treatments were set-up as follows: (spT) constant spring 
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temperature of 16 °C (from day 1 to 28); (sp-suT) increase from spring temperatures 16 

°C (on day 1) to summer temperatures 24 °C (on day 28); and (sp-suT2) increase in 

temperature from 16 °C (on day 1) to 24 °C (on day 28) with diel temperature 

fluctuations of ± 1 °C of temperature (Fig. 1). Temperature was controlled by an 

Aquatronic Aquarium Controller ACQ110©, with values programmed for each 3h, and 

monitored in each aquarium by Thermochron® iButton® DS1921G temperature data 

loggers. Each semi-open system had a total volume of 380 L, fully exchanged in 12 – 

24 h (100 – 200 % renewal d-1), including biological filtration.  

In each aquarium, barnacles were attached to a net (1 cm2/square mesh) and suspended 

at approximately half the height of the water column. Aquaria contained natural filtered 

seawater (FSW, 20 µm), with photoperiod programmed to follow the natural cycle, dim 

light intensity (100 – 200 lux), and turbulent conditions through the use of Hydor 

Koralia Pumps© and bottom aeration (Elite Air Stone, Rectangular, Extendable, 25 cm). 

Every day, aquaria were subjected to a tidal cycle of 3 h, during which time the water 

level decreased to half of the aquarium depth, leaving the barnacles exposed to air for 

approximately 2.5 h. Daily feeding included Artemia sp. (4 % dry weight per day; 

Artemia International GSL®), for 2 h prior to the start of the tidal cycle. Artemia cysts 

were hatched in 15-L conical flasks with FSW, 36 ± 1 ppt, 28 ± 1 ºC and strong bottom 

aeration (Sorgeloos and Persoone, 1975). After 24 h, Artemia nauplii were separated 

from the cysts and samples were counted to estimate daily feeding volumes. Dissolved 

oxygen, oxygen saturation and salinity, respectively 7.3 ± 0.1 mgO2 l
-1, 98.9 ± 1.9 % 

and 36.5 ± 0.7 psu (mean ± SD), were measured daily pre-tidal cycle.  

2.3. Data collection and treatment 

The groups of barnacles in each aquarium were monitored for barnacle growth rate, 

survival rate, fecundity index, lamella development and naupliar release rates. Naupliar 
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size and survival over a 24-h period were also monitored. At days 1 and 28, mapped 

individuals were measured with  digital callipers for RC and SL, with specific growth 

rate (SGR-RC; % 28 d-1) calculated by [SGR=(ln((RCtf)/RCti)/(tf-ti)×100)], where tf and 

ti are the initial and final days of experiment, respectively 0 and 28 and RC/SL ratio 

(RC/SL) calculated by [RC/SL=RCt/SLt], where t is time in days. Replicate aquaria 

were screened daily for dead individuals; which were carefully removed from clusters 

and measured for RC length, to estimate daily adult mortality rates (% d-1, dM; where 

[dM=(Ndead/N)×100], where Ndead is number of dead individuals and N is the total 

number of individuals), total survival (% 28d-1, tS) and average RC size of dead 

individuals (mm RC, dRC). Egg lamellae were removed from a sample of adult 

barnacles (n=30; RC ≥ 12.5 mm) to assess fecundity (FI; %) and maturity, by 

macroscopic analysis of lamella development stage index (LDSi), according to Table 1. 

Fecundity was calculated by [FI=(Nlamellae/N)×100], where Nlamellae is the number of 

individuals with lamellae and N is the total number of individuals. This was done at the 

beginning and end of the experimental period to compare the FI and LDSi of the initial 

broodstock (hereafter as control) and the experimental treatments, in addition to RC and 

RC/SL measures. Extracted egg lamellae were then left to hatch (in identical conditions 

to nauplii maintenance) and a number of released nauplii (n=30 nauplii) were 

maintained for 24 h to estimate naupliar size (GWn) and 24-h survival (24hS), as 

described below. Each day, all nauplii released from each aquarium were collected and 

counted (through volumetric sampling) to estimate daily (# day-1, dRR), weekly (# 

week-1, wRR) and total naupliar release rates (# 28d-1, tRR) per aquarium (where 

[RR=nreleased/N], where RR is release rate, Nreleased is number of released nauplii per 

aquarium and N is the total number of individuals per aquarium). Barnacle nauplii were 

collected using 80-µm filters placed over the outlet of each aquarium. Samples of 30 
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barnacle nauplii per treatment were maintained, to estimate survival to 24 h, in Petri 

dishes (50x9 mm; 12 mL; BD Falcon®), in FSW, 18 ± 1 ºC, 16:8 L/D (dim light) and 35 

± 1 ppt. To compare naturally released nauplii with extracted nauplii, all larvae were 

also photographed and measured (Image J®) for greatest width. 

2.4. Statistical analyses 

All statistical analyses were performed using STATISTICA 7.0®. Percentages (%) were 

arcsine transformed. Data were subjected to parametric tests including analysis of 

variance (ANOVA) or analysis of covariance (ANCOVA), with time as covariate, when 

assumptions for normality and homoscedasticity were met (Shapiro-Wilk and Levene 

tests, respectively). The significance level was set at α=0.05. Significant ANOVAs and 

ANCOVAs were followed by a Tukey test to identify differences among groups. Data 

that did not fulfil the assumptions for normality and homoscedasticity were subjected to 

non-parametric tests (Kruskal-Wallis test). Data in figures and tables are presented as 

mean ± standard error (SE), where not specified. 

 

3. Results 

3.1. SGR, RC/SL proportion and survival metrics 

The average specific growth rate was 0.84 ± 0.16 % RC 28d-1 (Table 2), with no 

significant differences between treatments (ANOVA, F=0.10; P=0.90). However, 

differences were found for RC/SL (ANOVA, F=3.68; P=0.01). Collected broodstock 

had a RC/SL index of 1.28 ± 0.38. While individuals in spT and sp-suT2 had higher 

RC/SL indices, sp-suT individuals had lower indices, comparable to the initial 

broodstock (Table 2).  Significant differences were found between sp-suT and sp-suT2 

(Tukey Test; P=0.02), but not between the remaining treatments (Tukey test; P≥0.06).  
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Differences between treatments were not significant for daily mortality (ANOVA, 

F=1.77; P=0.17) and total survival (ANOVA, F=4.36; P=0.07; Table 2). Daily mortality 

averaged 0.38 ± 0.03 % d-1, while total survival was 93.66 ± 0.76 % after 28 days 

(Table 2). The size of dead individuals in spT and sp-suT averaged 14.40 ± 0.34 mm 

RC, while in sp-suT2 they were significantly different, measuring 11.91 ± 3.44 mm RC 

(ANOVA, F=6.76; P<0.01; Tukey Test, P<0.01). 

3.2. Fecundity index and lamella development 

The temperature regime significantly affected the fecundity index (Fig. 2a; ANOVA; 

F=11.35, P<0.01), with increasing temperatures stimulating breeding. Treatments sp-

suT2 and spT did not differ significantly from initial fecundity (Tukey Test; P≥0.30; 

12.22 ± 4.00 and 14.44 ± 5.09 % fecundity, respectively), unlike sp-suT (Tukey Test; 

P<0.01). The fecundity index of broodstock reared at sp-suT was significantly higher 

than the other treatments (Tukey Test; P≤0.05) and individuals in this treatment reached 

26.67 ± 1.92 % fecundity in just 4 weeks, equivalent to five times the fecundity at the 

start of the experiment, when 5.09 ± 0.08 % of individuals carried egg lamellae.  

Temperature regime did not affect the size of individuals that bore egg lamellae (Fig. 3; 

ANOVA F=2.91, P=0.07), which averaged 15.94 ± 0.31 mm RC. Nevertheless, there 

were significant differences between the size of fecund and non-fecund individuals in 

the initial broodstock (ANOVA, F=8.11, P=0.01; Tukey Test, P=0.02), which were 

respectively 17.71 ± 0.65 mm RC and 15.37 ± 0.15 mm RC. 

The initial lamella development index was 0.33 ± 0.21, increasing to 0.80 ± 0.36, 2.53 ± 

0.47 and 3.15 ± 0.60 after 4 weeks of conditioning for spT, sp-suT and sp-suT2, 

respectively (Fig. 2b). Lamella development stage index was different according to 

conditioning regime (ANOVA, F=7.28, P<0.01), as sp-suT and sp-suT2 were higher 
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than initial values (Tukey Test, P≤0.01). Between treatments, final lamella development 

index was only significantly different between spT and sp-suT2 (Tukey Test, P=0.02).  

Broodstock initially had 80 % of stage 0 lamellae, and 20 % of stages 1 and 2 lamellae, 

with no mature egg lamellae observed at the beginning of the experiments (Fig. 4). 

After 28 d of rearing, spT had 60 % stage 0 and 40 % stage 1 and 2, while sp-suT and 

sp-suT2 had only 36 % and 23 % of stage 0 lamellae, and 32 and 38 % of mature egg 

lamellae. 

3.3. Naupliar release rates 

Average daily release rates did not vary with treatment (ANOVA, F=1.14, P=0.32; table 

3), averaging 4670.90 ± 506.63 nauplii d-1, though they did with time (ANCOVA, 

F=2.74, P<0.01; Fig. 5a). Individuals in spT showed one peak release (≥10000 larvae) 

by week 3, while in sp-suT and sp-suT2 there were two release peaks, in weeks 2 and 4 

(Fig. 5a). The larval release rate of individuals reared at spT peaked at day 23 (15833 ± 

2976 nauplii) (Fig. 5a; Tukey Test, P>0.01). Larval release rates for sp-suT peaked 

(Tukey Test, P>0.01) at day 11 (16531 ± 3937 nauplii) and day 28 (11969 ± 2246 

nauplii), while for sp-suT2 this happened at days 14 (13179 ± 7371 nauplii) and 27 

(25806 ± 4677 nauplii). 

Average release values increased with time and weekly rates were significantly different 

(Fig. 5b; ANOVA, F=35.43; P<0.01). Significantly lower numbers of larvae were 

released in week 1 (5310 ± 1891 nauplii week-1) when compared to week 4 (66424 ± 

9505 nauplii week-1; Tukey Test, P<0.01). Average release rate did not differ with 

treatment (Tukey Test; P≥0.68), except in week 4 when sp-suT was significantly lower 

than both sp-suT2 and sp-suT (Tukey Test; P=0.01), while these two did not differ from 

each other (Tukey Test; P=1.00). 
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Total release rates did not vary according to treatment (ANOVA, F=1.27, P=0.35). On 

average 126292 ± 2700 larvae were released per aquarium, although sp-suT2 presented 

the highest values, followed by spT and sp-suT. Total numbers of nauplii released per 

aquarium were 125692 ± 20154, 113075 ± 10223 and 145674 ± 1129 for spT, sp-suT 

and sp-suT2, respectively (Table 3). 

3.4. Nauplius size and 24-h survival 

Size did not vary between hatched in vitro and naturally released nauplii (ANCOVA: 

F=0.01, p=0.99), which measured 202.89 ± 8.69 µm GW. Similarly, nauplius size was 

not significantly different among treatments (ANCOVA, F=0.03; p=0.97; Table 3). 

Nauplius 24-h survival averaged 91.56 ± 0.35 %, without differences between 

temperature regimes (ANOVA, F=0.06, p=0.94; Table 3). 

 

4. Discussion  

This study confirms that P. pollicipes can be temperature conditioned effectively in 

captivity in a relatively short period of time. Broodstock were collected in April 2013 

and although about 5 % of the individuals were brooding eggs, none were carrying 

mature egg lamellae: on collection 80 % of egg lamellae were stage 0 and one month 

later up to 38 % had mature embryos. Although this might not allow exact estimation of 

the conditioning time required for later-season broodstock to develop from the post-

reproduction state to reproductive state, it provides the first basis for reproductive 

conditioning in this species. In the present study, conditioning was studied for 

broodstock collected early in their natural spawning season. Hence, future studies could 

also focus on later-season broodstock. It may be of particular interest to extend the 

experimental periods with the aim of validating long-term broodstock conditioning. 

Rearing temperature affected broodstock conditioning, fecundity index, lamella 
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development index and daily release patterns, although there were no differences in 

total number of released nauplii, nauplius size and nauplius 24-h survival rate.  

Broodstock SGR-RC did not differ significantly between treatments, varying between 

0.73 and 0.93 % RC 28d-1, i.e. within the range observed in the wild (e.g. 0.17 – 0.66 

mm RC month-1; Cruz, 2000). No differences in mortality rates were found; the daily 

mortality rate was 0.34 % d-1 and mortality over 28 days was 6.44 ± 1.54 %, similar to 

field study results (Cruz, 2000, Goldberg, 1984), where average mortality is of the order 

of 4 % month-1. In captive broodstock, mortality seems to occur mostly during the 

acclimatization period, as individuals on the external part of the clusters are often 

injured during collection. From previous experience, P. pollicipes adults and juveniles 

take between 1 and 2 weeks to acclimatize to feeding in captivity. 

Unlike SGR and mortality rates, RC/SL differed between treatments, with higher 

RC/SL in sp-suT2, followed by spT and sp-suT, which was closer to the initial 

broodstock value, suggesting differences in the quality of growth with growing 

conditions. Stalk elongation in relation to RC has previously been observed in stock 

maintained in sub-optimal culture conditions (unpublished results), possibly due to 

increased competition, and has also been reported in the wild (Cruz, 2000). Individuals 

with a correspondingly lower RC/SL index generally had a less firm stalk. The fact that 

RC/SL did not decrease in any of the treatments with time suggests both a lack of 

competitive pressure (that results in stalk elongation) and conditions that were limiting 

for development. 

Temperature, as well as food availability, is known to affect the reproductive cycles of 

many barnacle species, such as P. pollicipes, P. polymerus, Chthamalus depressus, 

Capitulum mitella, Chthamalus fissus (Cimberg, 1981; Cruz and Hawkins, 1998; Hines, 

1978; Page, 1983; Patel and Crisp, 1960ab). The regulatory effect of temperature on 
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reproduction is both metabolic and physiological, and can affect gonadal maturation and 

development rate, mating, brooding and larval release. The three treatments were 

selected in order to allow comparisons between temperature regimes, from early season 

temperature (spT) to reproductive season temperatures, with (sp-suT2) or without (sp-

suT) daily fluctuations. In spite of the lack of previous conditioning data for P. 

pollicipes, several temperature cycles have been used for barnacles, from a broad range 

of stable temperatures (e.g. Leung, 2002), to stable but higher temperatures (e.g. Patel, 

1959; Patel and Crisp, 1960b) or lower temperatures for species inhabiting temperate or 

cold waters (e.g. Crisp, 1957). Results from studies on bivalves show that regimes of 

increasing temperature can help induce breeding (e.g. Loosanoff and Davies, 1952; 

Chavez-Villalba et al., 2002). Reproductive cycles are often characterized by brooding 

frequency and the pattern of gonad development (e.g. Cardoso and Yule, 1995; Cruz 

and Araújo, 1999). Although gonadal development allows a more accurate estimation of 

reproductive development, its application is limited in terms of day-to-day assessment 

of reproductive state under culture conditions. Furthermore, individual maturity does 

not imply successful mating and brooding, and therefore the presence of egg lamellae, 

or released larvae, are important for assessing reproductive state. 

Fecundity index increased in all treatments, from 7 to 22 % in 4 weeks, compared to the 

initial broodstock fecundity. The best results were for sp-suT where 27 % fecundity was 

recorded. Successful conditioning studies with other barnacle species have achieved 20 

– 100 % fecundity in 2 to 6 weeks, depending on species and temperature (e.g. Patel and 

Crisp, 1960b). However, conditioning studies with C. mitella (e.g. Leung, 2002) could 

not achieve fecundity above 5 % for in-season individuals (or 0 % for off-season 

individuals) even after 6 weeks of conditioning, independent of the temperatures tested. 

In the present case, not only did the fecundity increase significantly, but it reached 
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values comparable to wild populations of P. pollicipes within 28 days of rearing. 

Fecundity indices in the wild are reported to vary greatly (0 – 80 %, Cruz, 2000), with 

high inter-annual and site-specific variation (Pavón, 2003, Cardoso and Yule, 1995). 

Other factors, such as tidal height, can account for differences from 60 – 100 % 

fecundity in the intertidal to as low as 5 % fecundity in the subtidal, during the breeding 

season (Cruz and Araújo, 1999). Peak values in the wild were recorded from May to 

September (18 – 80 %) by Cruz (2000) and August to October (20 – 50 %) by Molares 

(1994). Consistent with the broodstock collection results of the present study, Cruz 

(2000) also noted that P. pollicipes fecundity was higher in large individuals (RC > 15 

mm; 40 – 80 %) than in smaller ones (12 < RC ≤ 15 mm; 15 – 40 %).  

The lamella development index increased significantly in sp-suT and sp-suT2, 

transitioning from, on average, stage 0 to stage 3. Furthermore, the initial 0 % mature 

lamellae found, increased to between 32 and 38 % in sp-suT and sp-suT2, respectively, 

although in spT mature lamellae remained at 0 %. This, together with fecundity results, 

indicates that within 4 weeks lamellae cannot only develop from fully immature to 

ready to hatch, but also non-fecund individuals can mate and develop lamellae in that 

period if conditions are favourable. Interestingly, although spT showed an increase in 

fecundity, there was no increase in lamella maturity, which suggests not only that 

brooding time might be significantly reduced in the higher temperature treatments, but 

that there might also be a limiting temperature that triggers gonadal development. 

Nevertheless, the small increase in fecundity indicated that even in the absence of 

temperature increase, reproductive development can still occur, albeit at a slower rate.  

Broodstock fecundity increased by 6 % in sp-suT2 and spT and by about 21 % in sp-

suT, in the space of 28 days. However, when lamella development stage at day 28 is 

considered, sp-suT and sp-suT2 showed a significantly higher number ready to hatch; 
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between 32 and 38 % higher compared to spT. When total release rates were compared 

between treatments, sp-suT2 released in total 14 % more nauplii than spT and 23 % 

more than sp-suT. Under these conditions, the treatment with highest fecundity was sp-

suT, while the treatment with highest total release rate was sp-suT2. This raises the 

question of whether it is better to rear apparently highly fecund individuals that release 

fewer larvae, or less fecund individuals that release more larvae. These observations 

may be explained by the fact that the sampling frequency for assessment of fecundity 

occurred only at day 0 and day 28, while releases of larvae occurred throughout and 

were monitored daily. It is important to note, however, that no differences in 24-h larval 

survival were found between releases of different treatments, though later differences in 

viability cannot be excluded. Therefore, while daily release rates provide a trend in 

time, fecundity index and lamella development stage provide a snapshot of reproductive 

fitness pre- and post-conditioning. One could argue either that the higher fecundity of 

sp-suT indicates a higher propensity for release of nauplii, or that the lowest fecundity 

of sp-suT2 at the end of the experiment is due to a previously high release rate during 

the experimental period. Considering that egg incubation for embryonic development is 

thought to take between 15 to 24 days (Molares, 1994; Cruz, 2000), if nauplii had been 

released within that conditioning period it is unlikely that there would be sufficient time 

to deposit new lamellae.  

Similar daily release rates were recorded across treatments, averaging approximately 

4500 nauplii day-1, although peak values were frequently above 10000 nauplii day-1. 

These values may seem low compared to previous studies, e.g. 16229 ± 1094 and 

34172 ±  1807, according to barnacle size (Cruz and Araújo, 1999; Cruz, 2000) 

compared to 15547 ± 2589 embryos per lamella in the present study. However, when 

lamellae were left to hatch over a 24-h period, hatching rate was about 15 % increasing 
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to 25 % by 48 h. Embryos at the periphery of the egg lamella were often several 

development stages ahead of the central embryos and hatched between 2 – 10 days 

earlier. This is probably due to differences in oxygenation between central and 

peripheral embryos (Crisp, 1959). Although these observations relate to isolated egg 

lamellae hatched in vitro, lamellae brooded inside the mantle cavity of the adults might 

be subject to similar conditions with partial hatching occurring over time. Indeed, 

lamellae collected from wild individuals did contain embryos at different stages of 

development. Therefore, it is hypothesised that adults carrying mature egg lamellae may 

release their newly hatched nauplii over a period of days, rather than as a single event. 

Other barnacle species, such as Semibalanus balanoides, have been observed to retain 

their embryos after reaching a hatch-ready state for at least a month until conditions are 

suitable for release (Clare et al., 1982). This would explain the low daily release rate 

associated with comparatively high fecundity index and a high percentage of lamellae 

with embryos that are ready to hatch in the increasing temperature treatments. 

Given the experimental design, it was not possible to estimate the number of adults 

releasing larvae. This would have provided valuable insight into the proportion of 

mature adults and actively releasing individuals and, consequently, the number of adults 

needed to ensure a suitable volume of production and maintain a diverse larval genetic 

background. This could be addressed by studies following single individuals and not 

cohorts which, despite being more applicable to aquaculture, have experimental 

limitations. 

For sp-suT, release rates seemed to increase and peak at day 11 (19.6 °C), followed by a 

decrease until almost day 28 (23.0 °C) when they increased again. On the other hand, 

for sp-suT2, the same behaviour was observed, but peaks occurred at days 14 and 27, 

where temperatures averaged 20.1 °C and 22.6 °C. In both treatments, peak releases 
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started as they approached 20 °C, indicating that this temperature might be relevant to 

trigger reproduction. It is hypothesised that this temperature might be suitable for a 

constant high-temperature conditioning regime, and further studies should investigate 

this, as it could imply a commercially more cost-effective conditioning regime than 

increasing temperatures.  These patterns differed between groups in terms of peak 

frequency, between stable and increasing temperatures, but also the timing and intensity 

of the peaks in treatments kept at increasing temperature.  

Although the two treatments of increasing temperatures peaked at similar times and at 

similar intensities, sp-suT2 showed a higher average dRR and less time between dRR 

peaks compared to sp-suT. The effects of temperature variations are still poorly 

understood and the relative importance of temperature for different species may be 

related to temperature intensity, critical values, or even the effect on development rates 

(Muranaka and Lannan, 1984; Cardoso and Yule, 1995). The reduced time between 

dRR peaks in sp-suT2 suggests that daily changes of temperature, as would be 

experienced in the wild, induce faster development than other tested conditions. 

Temperature cycles are reproduction regulators, being advantageous for allowing the 

synchronization of reproduction between individuals, and essential when female and 

male development does not occur contemporaneously. In general, for P. pollicipes, it is 

accepted that the increase in temperature triggers reproduction, and this is supported by 

the present results, although in the wild this occurs in synchrony with the increase in 

food availability. For S. balanoides, the gonadal maturation is triggered by both 

decreased temperature and photoperiod (Barnes, 1963, 1989; Crisp, 1986), while for 

Chthamalus stellatus, Elminius modestus, Balanus perforatus and B. amphitrite, 

temperature and food affect gonad development (Patel and Crisp, 1960b). P. pollicipes 

may differ, however, as the maturation of female and male gonads is distinct throughout 
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the year. Cruz (2000) observed that during the breeding season, the percentage of 

mature female gonads ranged between 20 and 60 %, while the seminal vesicles of most 

of the population were mature all year round. Molares (1994) suggested that the 

maturation of the female gonad restricts reproduction to the period between March and 

September. In the absence of limiting conditions, however, it is likely that gonad 

recovery occurs at a faster pace, allowing for shorter brooding periods and therefore 

multiple release peaks. Under this scenario, temperature variations might effectively act 

as release triggers, leading to closer release peaks and to higher intensity spawning, as 

seen in sp-suT2 in comparison to sp-suT.  

Nauplii collected from the adults and from natural releases were analysed further for 

size and 24-h survival rate, but no differences were found between treatments and 

between extracted and collected nauplii. These are promising results for nauplii released 

in culture, since naupliar survival does not seem to be affected by source or adult 

rearing conditions. Nevertheless, it cannot be excluded that wild-raised and naturally-

released larvae might show differences in health as larvae develop. Further studies 

should evaluate possible effects on cyprid metamorphosis, survival and larval 

settlement, considering in particular larvae obtained by extraction from wild adults vs. 

larvae collected from releases in culture. To our knowledge, no report of such effects 

has been observed in barnacle species, although the larval period of other species (e.g. 

Balanus improvisus) can be significantly extended by dietary deficiency, yet still result 

in ostensibly healthy larvae.  

 

5. Conclusions 

Temperature conditioning of P. pollicipes can be achieved in culture in less than a 

month, provided that individuals are previously acclimated. Better results for 
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conditioning, in terms of fecundity, percentage of mature lamellae and frequency of 

larval release peaks were achieved for broodstock reared at increasing temperature. It is 

suggested that increasing temperature might decrease development time and accelerate 

egg lamella maturation, as food availability was not limiting. This would allow for 

multiple release peaks. Furthermore, broodstock kept with daily temperature variations 

showed slightly better results in terms of lamella development index, lamella maturation 

and time between peaks of release. However, no significant differences were noted 

between the total number of larvae produced, suggesting that the conditioning effect 

mostly relates to timing and concentration of release events. Interestingly, the daily 

average number of nauplii released was below that expected, given the number of 

embryos produced by each adult. Therefore it is proposed that individuals might be 

releasing larvae of the same brood over a period of days, as the embryos hatch within 

the mantle cavity. Furthermore, analysis of naupliar size and 24-h survival did not 

reveal differences between extracted and released larvae, validating both protocols.  

The present work establishes a rearing protocol for broodstock that allows for 

maintenance in culture and spawning stimulation, and that can serve as a basis for future 

broodstock reproduction in captivity. Furthermore, the proposed conditioning method 

could be easily translated to a commercial aquaculture setup. The results from the 

present study support the proposal that P. pollicipes conditioning can be a valuable tool 

for larval collection in captivity and production of larvae under culture conditions, not 

limited to the breeding season, and in significant numbers for scaling up cultures. 
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Fig. 1 Daily temperature, over the 28-day experimental period, according to 

conditioning regime. Treatments were as follows: (spT) constant spring temperature of 

16 °C (from day 1 to 28); (sp-suT) increase from spring temperature 16 °C (on day 1) to 

summer temperatures 24 °C (on day 28); (sp-suT2) as previous regime but with diel 

temperature fluctuations of ± 1 °C of the daily mean temperature. 

Fig. 2 (a) Fecundity index (%) and (b) lamella development stage index (#) of 

broodstock cultured for 4 weeks at different temperature regimes. Treatments were as 

follows: (spT) constant spring temperature of 16 °C (from day 1 to 28); (sp-suT) 

increase from spring temperature 16 °C (on day 1) to summer temperatures 24 °C (on 

day 28) and (sp-suT2) average increase in temperature from spring 16 °C (on day 1) to 

summer 24 °C (on day 28) with diel temperature fluctuations of ± 1 °C. The values 

referring to variables measured in the initial broodstock collected are presented for 

comparative purposes and listed as (Control). Different letters indicate significant 

differences. 

Fig. 3 Size (RC distance, mm) of broodstock reared under different temperature 

regimes, considering the rostro-carinal (RC) distance of individuals without egg 

lamellae (n not fecund, black) and individuals found bearing egg lamellae (n fecund, 

grey). Treatments were as follows: (spT) constant spring temperature of 16 °C, (sp-suT) 

linear temperature increase from spring 16 °C (on day 1) to summer 24 °C (on day 28) 

and (sp-suT2) average increase in temperature from spring 16 °C (on day 1) to summer 

24 °C (on day 28) with diel temperature fluctuations of ± 1 °C. The values referring to 

measures done in the initial broodstock collected are presented for comparative 

purposes and listed as (Control). Different letters indicate significant differences.  



 

 

29 

 

Fig. 4 Percentage of egg lamellae according to development stage, extracted from 

broodstock reared under different temperature regimes. Stages were classified as (0) 

undifferentiated, (1) early differentiation, (2) mid differentiation, (3) late differentiation, 

(4) differentiated, according to Table 1. Stage 4 lamellae were ready to hatch, and 

nauplii would swim freely upon egg lamella membrane rupture. Treatments were as 

follows: (spT) constant spring temperature of 16 °C, (sp-suT) linear temperature 

increase from spring 16 °C (on day 1) to summer 24 °C (on day 28) and (sp-suT2) 

average increase in temperature from spring 16 °C (on day 1) to summer 24 °C (on day 

28) with diel fluctuations of ± 1 °C. The values referring to the initial broodstock 

collected are presented for comparative purposes and listed as (Control). 

Fig. 5 (a) Daily release rates, i.e. number of nauplii released per aquarium per day, and 

(b) weekly release rates, i.e. number of nauplii released per aquarium per week, during 4 

weeks of conditioning and according to temperature regime. Treatments were as 

follows: (spT) constant spring temperature of 16 °C, (sp-suT) linear temperature 

increase from spring 16 °C (on day 1) to summer 24 °C (on day 28) and (sp-suT2) 

average increase in temperature from spring 16 °C (on day 1) to summer 24 °C (on day 

28) with diel temperature fluctuations of ± 1 °C.  
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Tables 

Table 1. Criteria for the classification of lamellae according to development stage. Lamellae 

were analyzed macroscopically and classified according to colour and texture. Microscopical 

analysis was also done according to nauplii maturation stage, considering the differentiation 

stage of the eyes, appendages and digestive system. These were classified as U undifferentiated, 

pD partially differentiated and D differentiated.  

Class  Development stage Colour  Texture Embryo development 

Eye Appendages Stomach 

0 Undifferentiated Pink Rigid U U U 

1 Early differentiation Pink Rigid pD U U 

2 Mid differentiation Pink-Yellow Semi-rigid D U U 

3 Late differentiation Yellow-Brown Flaccid D D U 

4 Differentiated Yellow-Brown Cloudy D D D 

 

 Table 2. Growth and survival metrics for P. pollicipes adults grown for 4 weeks under different 

temperature regimes (spT, sp-suT and sp-suT2). Growth metrics considered included specific 

growth rate based on rostro-carinal distance (SGR-RC, % RC 28d-1) and proportion between 

rostro-carinal distance and stalk length (RC/SL, #; RC/SL Control =1.28 ± 0.38). Survival metrics 

included daily mortality (dM, % d-1), total survival (tS, %) and rostro-carinal distance of dead 

individuals (RCd, mm RC). Different letters within rows indicate significant differences 

(P<0.05).  

 sp-suT2 sp-suT spT 

SGR-RC (% 28d-1) 0.83 ± 0.24 a 0.93 ± 0.31 a 0.73 ± 0.29 a 

RC/SL (#) 1.47 ± 0.40 b 1.29 ± 0.29 a 1.37 ± 0.38 ab 

dM (% d-1) 0.42 ± 0.56 a 0.29 ± 0.53 a 0.43 ± 0.54 a 

tS (% 28d) 91.33 ± 1.63 a 94.98 ± 2.27 a 91.68 ± 0.76 a 

RCd (mm RC) 11.91 ± 3.44 a 14.54 ± 2.76 b 14.27 ± 3.04 b 

 

 Table 3. Daily release rates (dRR, # nauplii aquarium d-1), total release rates (tRR, # nauplii 

aquarium 28d-1), released nauplii I size (TL, µm) and nauplii survival after 24h (24hS; %), 

according to temperature regimes (spT, sp-suT and sp-suT2). Different letters within rows 

indicate significant differences (P<0.05). 

 sp-su T2 sp-su T sp T 

dRR (larvae d-1) 4972.00 ± 722.15 a 4062.83 ± 466.15 a 4495.92 ± 635.55 a 

tRR (larvae) 145674.51 ± 11292.40 a 113075.34 ± 10223.32 a 125692.33 ± 20154.10 a 

GW (µm) 203.67 ± 2.84 a 202.33 ± 2.85 a 202.67 ± 5.90 a 

24hS (%) 91.01 ± 1.52 a 92.00 ± 1.53 a 91.67 ± 2.91 a 

 

 

 


