Seaweed fertilisation impacts the chemical and isotopic composition of barley

Blanz, Magdalena; Ascough, Philippa; Mainland, Ingrid; Martin, Peter; Taggart, Mark A.; Dieterich, Burkart; Wishart, John; Sayle, Kerry L.; Raab, Andrea; Feldmann, Jörg

Published in:
Journal of Archaeological Science
Publication date:
2019
Publisher rights:
© 2019 Elsevier Ltd. All rights reserved.
The re-use license for this item is:
CC BY-NC-ND
The Document Version you have downloaded here is:
Peer reviewed version

The final published version is available direct from the publisher website at:
10.1016/j.jas.2019.02.003

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 06. Feb. 2021
Seaweed fertilisation impacts the chemical and isotopic composition of barley: Implications for analyses of archaeological skeletal remains

Magdalena Blanz\textsuperscript{a,b,*}, Philippa Ascough\textsuperscript{c}, Ingrid Mainland\textsuperscript{a}, Peter Martin\textsuperscript{d}, Mark A. Taggart\textsuperscript{e}, Burkart Dieterich\textsuperscript{d,f}, John Wishart\textsuperscript{d}, Kerry L. Sayle\textsuperscript{c}, Andrea Raab\textsuperscript{b}, Jörg Feldmann\textsuperscript{b}

\textsuperscript{a}Archaeology Institute, University of the Highlands and Islands, Orkney College UHI, East Road, Kirkwall, Orkney, KW15 1LX, Scotland, UK
\textsuperscript{b}Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen, AB24 3UE, Scotland, UK
\textsuperscript{c}Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, Rankine Av, East Kilbride G75 0QF, UK
\textsuperscript{d}Agronomy Institute, University of the Highlands and Islands, Orkney College UHI, East Road, Kirkwall, Orkney, KW15 1LX, UK
\textsuperscript{e}Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Scotland, KW17 7JD, UK
\textsuperscript{f}The James Hutton Institute, Errol Road, Dundee, DD2 5DA, UK

*Corresponding author: m.blanz.11@aberdeen.ac.uk

\textbf{Address:} Archaeology Institute
University of the Highlands and Islands
Orkney College UHI
Kirkwall, Orkney
KW15 1LX
Scotland, UK
Abstract

Fertilisation with animal manure has been shown to affect crop chemical and isotopic composition, indicating that if manuring effects are not taken into account, there is a risk of overestimating consumer trophic levels in palaeodietary studies. The effect of fertilisation with seaweed, a common fertiliser in the past in coastal areas, has been the subject of several hypotheses, but until now has not been studied in this particular context.

In this study the impact of fertilising bere, an ancient type of Scottish barley (*Hordeum vulgare* L.), with 25 t/ha and 50 t/ha seaweed, in comparison to a modern commercial mineral fertiliser and to no fertilisation, was investigated in a field trial on the Orkney Islands, Scotland. Stable isotope ratios (δ¹³C and δ¹⁵N) and elemental compositions (B, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Mo, Cd and Pb) of grain, husk and straw samples were determined. Significant differences were found between treatment groups, including increases in δ¹⁵N values of 0.6 ± 0.5 ‰ (average ± 1σ for five replicate plots) in grain, and 1.1 ± 0.4 ‰ in straw due to seaweed fertilisation. Elevated concentrations of Sr in grain and husk samples (factors of 1.2 to 1.4) indicate the geographic tracer ⁸⁷Sr/⁸⁶Sr may also be affected.

Fertilisation with seaweed thus needs to be considered for archaeological interpretations of chemical and isotopic compositions of crop and skeletal material for accurate palaeodietary and provenance reconstructions, particularly in coastal areas. Further implications of these results for studies concerning the effects of sea spray, radiocarbon-dating, and for dietary reconstructions using trace elements are also identified.

**Keywords:**
- manuring
- kelp fertiliser
- coastal archaeology
- past/prehistoric agriculture
- crop husbandry
- land management
- archaeological chemistry
1 Introduction

The study of archaeological skeletal material using stable isotope ratio and trace elemental analysis has frequently been used to infer past diets and geographic origin of humans and animals (reviewed in e.g. Bentley, 2006; Lee-Thorp, 2008). These dietary reconstructions are based on the predictable transfer of a chemical or isotopic "signature" from the diet to the skeleton during life. However, for such research to be robust, it is necessary to have a thorough understanding of how the chemical and isotopic composition of skeletal material is influenced by naturally (e.g. climate, underlying geology; Bentley, 2006; Craine et al., 2009) and anthropogenically (e.g. fertilisation, irrigation; Bogaard et al., 2007) induced variability in the composition of primary producers such as cereals, trees and even algae. Understanding the extent and origin of such variability and how it is transferred up the food chain greatly improves the accuracy of dietary reconstructions of humans and animals (Tieszen, 1991; van Klinken et al., 2000).

The importance of taking manuring in particular into account is well-illustrated when considering nitrogen stable isotope ratios ($\delta^{15}N$), which are commonly used as indicators of trophic level as they reflect $\delta^{15}N$ of dietary protein, but additionally increase up the food chain by generally around 3–5 ‰ per trophic level in skeletal collagen (Bocherens and Drucker, 2003; Hedges and Reynard, 2007). Fertilisation with animal dung has been shown to elevate crop $\delta^{15}N$ values by up to (or potentially more than) 7 ‰ compared to unfertilised crops (Bogaard et al., 2007; Bol et al., 2005; Comimso and Nelson, 2007; Fraser et al., 2011; Kanstrup et al., 2012, 2011; Styring et al., 2014a; Treasure et al., 2016). This leads to elevated $\delta^{15}N$ values in consumers (particularly when plants are the dominant protein source). Additionally, after consumption by e.g. sheep, this elevation in $\delta^{15}N$ values can be passed up the food chain in the form of dietary protein. Thus, when manuring is not taken into account, there is a danger of overestimating the trophic levels of all consumers in the food chain, including those who do not directly consume fertilised plants in substantial amounts but do consume animal products.

Fertilisation with seaweed can significantly increase yields of various terrestrial crops (Khan et al., 2009), and its historic use as a fertiliser has been documented in Europe (e.g. Arzel, 1984; Kenicer et al., 2000; Russell, 1910), Asia (e.g. Komatsu and Yanagi, 2015; Maddison, 2006; Tajima, 2007) and America (e.g. Mikkelsen and Bruulsema, 2005; Suttles, 2005; Thompson, 2005). Widely available on rocky shores, seaweed would have been especially valuable in the past in areas where the amount of livestock kept could not provide sufficient dung. Utilising seaweed instead of dung as fertiliser also relaxed constraints on livestock management, e.g. allowing for the out-wintering of stock, as seaweed obviated the need to collect dung by housing animals over winter (Dodgshon, 2011; Zimmermann, 1998). Additionally, seaweed has also been reported to be preferable to dung as a fertiliser because seaweed does not tend to harbour pathogens harmful to terrestrial plants, or introduce weeds via undigested seeds (Hendrick, 1898).

While numerous modern agronomic studies have investigated the use of seaweed as fertiliser (reviewed in Khan et al., 2009), past marine plant use is not currently widely researched (but
this is beginning to change; e.g. Mooney, 2018) and archaeologically important effects on crop composition (particularly δ¹⁵N and δ¹³C) have not yet been studied. Stable carbon isotope ratios (δ¹³C) are often used to distinguish between terrestrial and marine foods, since in absence of C₄ plants, collagen δ¹³C values of ~12 ‰ generally indicate almost all dietary protein to be marine, while values of ~20 ‰ indicate diets without significant amounts of marine protein (Richards and Hedges, 1999). It has been suggested that fertilisation with marine products (particularly seaweed) may lead to elevated crop δ¹³C values (Craig et al., 2005; Jones and Mulville, 2016; Milner et al., 2004; Murray et al., 2012), which, if unaccounted for, would lead to an overestimation of the direct consumption of marine foods. However, as terrestrial plants primarily acquire carbon by photosynthesis with atmospheric CO₂, rather than from soil, it has also been asserted that fertilisation with marine material does not affect crop δ¹³C values (Fraser et al., 2017; Richards and Schulting, 2006; Schulting et al., 2010). Other hypothesised effects concerning marine-fertilised terrestrial crops include increased δ¹⁵N values (Fraser et al., 2017; Jones and Mulville, 2016; Schulting and Richards, 2009; Schulting et al., 2010), increased δ³⁴S values (Fraser et al., 2017; Lamb et al., 2012; Schmidt et al., 2005), increased strontium (Sr) concentrations and a shift toward marine ⁸⁷Sr/⁸⁶Sr isotope ratios (Evans et al., 2012; Montgomery et al., 2007, 2003; Montgomery and Evans, 2006). Clarity as to the effects of seaweed fertilisation on the chemical and isotopic composition of terrestrial crops would aid in the interpretation of existing and future isotope ratio and trace elemental data. This could contribute to e.g. the European Neolithic–Mesolithic transition debate, wherein the dietary importance of marine resources in particular has long been discussed: It has been argued that marine resources were important in the Mesolithic, but abruptly lost significance once farming began in the Neolithic (e.g. Cramp et al., 2014; Richards and Schulting, 2006; Schulting and Richards, 2002). This has also been interpreted to imply a type of taboo surrounding marine foods in the Neolithic (Thomas, 2003). Others have argued against this, reasoning that marine resources continued to be exploited in the Neolithic in significant amounts (Lidén et al., 2004; Milner et al., 2006, 2004) and may have been particularly important during famines in adverse climates (Montgomery et al., 2013). However, in these discussions, the term “marine” is usually used to refer to marine mammals, fish and shellfish, and seaweed has largely been ignored both as a source of food for humans and animals, and as a fertiliser. This is likely in part due to the difficulty of identifying contributions of seaweed to complex diets, both by isotopic measurements and other means (though Neolithic Orkney sheep have recently been shown to have been consuming seaweed; Balasse et al., 2009; Schulting et al., 2017). Thus, new approaches are needed to identify seaweed consumption, which may include e.g. studies of the elemental composition of tooth enamel in seaweed-eating vertebrates. Such approaches would however require modern baseline data for marine, coastal and terrestrial ecosystems, as well as data from seaweed-fertilised plants, if informed interpretations of archaeological data are to be made.

In this study, our aim is to explore the effect of seaweed fertilisation on δ¹⁵N, δ¹³C and elemental composition of the crops by performing a field trial growing bere, a Scottish barley (Hordeum vulgare L.) landrace, with seaweed fertilisation. This will establish modern baseline
data for marine-fertilised terrestrial crops, aiding in more accurate interpretations of the chemical and isotopic compositions of skeletal remains of (potential) direct and indirect consumers of such crops, as well as crop husbandry practices.

2 Historical and archaeological background to field trial design

The field trial was designed to be similar to historically documented seaweed fertilisation practices, whilst taking practicability into account. Bere barley, a hulled lax-eared six-row landrace of barley, was chosen as the crop for this field trial due to the particular importance of barley for both human and animal consumption in Northern Europe from the Neolithic onwards (Bishop et al., 2009; Dockrill et al., 1994; Hunter et al., 1993; McClatchie et al., 2014). Bere barley is one of the oldest cereals still in cultivation in Britain (Jarman, 1996; Martin et al., 2008; Wallace et al., 2018) making it more likely to be similar to barley found archaeologically than modern barley varieties. Numerous historical sources indicate that barley was frequently fertilised with seaweed (e.g. Fenton, 1997; Martin, 1716; Russell, 1910; Sauvageau, 1920).

The choice of seaweed for fertilisation ranged widely, with local preferences for either cut or stranded seaweed, and for specific species (e.g. Laminaria spp., Fucus spp., Ascophyllum nodosum; Fenton, 1997; Hendrick, 1898; Neill, 1970; Russell, 1910; Sauvageau, 1920). Due to the lack of consensus as to which species of seaweed is/was historically preferred for fertilisation, and since all the preferred species are abundant on rocky shores in Britain and Ireland today (Hardy and Guiry, 2003) and have likely been for the past 6,000 years (Coyer et al., 2003; Muhlin and Brawley, 2009; Olsen et al., 2010; Rothman et al., 2017), we decided for practical reasons to use stranded seaweed of various species (including e.g. Laminaria spp., Fucus spp., Ascophyllum nodosum), as found on the shore, for this field trial.

Historical seaweed application rates documented in the literature ranged from 10 t/ac to 50 t/ac (ca. 25 t/ha to ca. 124 t/ha; Hendrick, 1898; Noble, 1975; Russell, 1910; Stephenson, 1968). The selected application rate presumably mainly depended on the availability of labour, draught animals and seaweed, as well as the type and quality of the soil, and the crop type. In the case of bere barley, over-fertilisation leads to increased incidences of lodging (i.e. falling over), which can negatively impact plant growth and complicates harvesting (Shah et al., 2017). Hence, two rather conservative application levels of 25 t/ha and 50 t/ha seaweed (i.e. ca. 10 and 20 t/ac) were chosen for this field trial.

Historically, seaweed application was often undertaken multiple times a year, with seaweed generally applied fresh from the shore in autumn or winter, and as compost when the crop was about to be seeded or already growing (Dodgshon, 1988; Fenton, 1997; Noble, 1975; Russell, 1910; Sauvageau, 1920; Stephenson, 1968). For this study, seaweed was composted and applied shortly before sowing. A modern commercial fertiliser was also used in this study on separate plots to help distinguish between the more general effects of fertilisation, and effects that are specific to fertilisation with seaweed.
3 Materials and methods

3.1 Field trial design and implementation

An agronomic experimental site ca. 100 m north of Orkney College UHI (Scotland) and ca. 250 m south of the nearest coastline was chosen for the field trial (58° 59’ N and 2° 57’ W; grid reference HY 456 114). This area has an acidic clay loam soil (see supplementary material). In previous years, the field had been cultivated and fertilised with a NPK mineral fertiliser at a low level of 50 kg N/ha (likely with a $\delta^{15}$N value between 0 and $-1$ ‰, Bateman and Kelly, 2007; described further below). No other fertilisation-based agronomic field trials had been performed in this area before, so that the soil was considered largely homogeneous throughout the trial area.

The trial plots were laid out in a randomised block design as 3 m × 3 m (9 m$^2$) plots, with 1 m space between adjacent plots and five replicate plots per fertilisation treatment. Around 450 kg of stranded seaweed of various species were collected from Newark Bay, Mainland, Orkney (Grid reference: HY 567 041). After composting for 1.5 months in aerated plastic bags, the composted seaweeds were manually evenly distributed onto marked out plots on the ploughed, power-harrowed field at rates of 25 t seaweed/ha and 50 t seaweed/ha (wet weight; corresponding to ca. 200 kg N/ha and 400 kg N/ha, not all of which was bioavailable). A conventional 14-14-21 NPK fertiliser (YaraMila MAINCROP 14-14-21; Yara UK Ltd, Belfast, UK) was manually applied to a third set of plots at 50 kg N/ha. A fourth set of plots (control plots) were not fertilised in any way, making up a total of 20 plots (5 unfertilised, 5 with 25 t seaweed/ha, 5 with 50 t seaweed/ha, 5 NPK-fertilised). After spreading the fertilisers, all plots were power-harrowed twice to mix the seaweeds into the soil. The barley was sown the following day (early May 2017) at a rate of approximately 16 g/m$^2$ with a thousand grain weight of 30.3 g, using a tractor drawn seeder (width 3 m). The soil surface was then flattened using a Cambridge roller. After one month of growth a herbicide mixture (see supplementary material) was applied to all plots in order to prevent excessive weed growth. The bere barley was harvested in early September 2017 from a 1 m × 1 m square at the centre of each 3 m × 3 m plot to avoid edge effects, issues related to soil compaction due to tractor wheels, and effects due to fertiliser run-off. The harvested barley was dried at 30 °C until constant weight (ca. 48 h) and weighed for yield evaluation. A random subsample of 15 stalks (including ears) was taken for chemical and isotopic analysis from each plot.

3.2 Chemical and isotopic analyses of bere barley

3.2.1 Sample pre-treatment

The harvested barley was separated into straw, grain (including bran) and husk samples for analysis, as these different parts would have been consumed to different extents by humans and livestock. From each of the 15 sampled ears per plot, all grains from half of the ear (top to bottom) were manually separated from the rachis, and the awns were manually separated from the husks. This resulted in samples of around 300 grains per plot, weighing ca. 10 g per
sample including the husk and bran. From this, a random subsample of approximately 2 g of grain (ca. 50-70 grains) per plot was taken, from which husks were manually removed and kept for analysis. As the bran was not easily removable and would likely not (commonly) have been removed in the past (Britton and Huntley, 2011; Fenton, 1997; Jadhav et al., 1998), the de-husked grains were not treated further. Grains were then homogenised by mortar and pestle. Around 10 g of dried straw from each plot was ground using an electric spice and nut grinder (Model SG20U, Cuisinart Corp., Greenwich, USA), and then sieved to 1 mm with a plastic mesh. This processing yielded five samples (one per replicate plot) for each of the four treatment types per plant part, i.e. 20 unique samples for each of husk, grain, and straw, all of which were analysed for their chemical and isotopic composition as described below.

For the analysis of the fertilisers, a pooled sample (120 g dry weight) of the composted seaweed as it was at the time of application in May was dried, ground and sieved as described for the straw samples. An aliquot of 1.5 g sample of the conventional NPK fertiliser was homogenised to a fine powder using a mortar and pestle.

3.2.2 Elemental composition analysis

The concentrations of B, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Mo, Cd and Pb in straw, grain, husk, and the seaweed and NPK fertilisers were determined. For this, 0.1 g of each sample except the NPK fertiliser were left to pre-digest overnight with 2 mL HNO₃ (70 % analytical reagent grade, Fisher Scientific UK). After addition of 3 mL H₂O₂ (30 % w/v laboratory reagent grade, Fisher Scientific UK), the samples were microwave digested using a non-pressurized CEM Mars 5 system (CEM Microwave Technology Ltd., UK), with samples heated to 95 °C for 30 min. Dilutions were then performed using bidistilled water (Aquatron still A4000D, Bibby Scientific Limited, UK). The NPK fertiliser was prepared by addition of 13 mL bidistilled water and 1 mL concentrated HNO₃ to 0.1 g of sample, without microwave digestion.

Analysis was performed by microwave plasma atomic emission spectroscopy (MP-AES; Agilent 4200, instrument parameters in Table S.1, supplementary material) and by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS; Agilent 8800, instrument parameters in Table S.2, supplementary material). Triplicate measurements were performed every five samples. Certified reference materials NIST1568a (rice flour), NIST1573a (tomato leaves), NIST3232 (kelp powder) and NIST8415 (whole egg powder), which were microwave-digested and analysed as above, yielded recoveries of mainly between 80 and 120 % (Tables S.3 and S.4, supplementary material).

3.2.3 Stable isotope ratio analysis for δ¹³C and δ¹⁵N

The husk samples were comminuted using single edge razor blades (Fisher Scientific, Loughborough, UK) on a granite cutting surface to a size where no spatial dimension was > 2 mm. Around 600 μg and 3–10 mg of each husk, grain, straw and seaweed sample (exact weights known) were weighed into separate tin capsules for δ¹³C and δ¹⁵N measurements, respectively. Stable isotope ratios were determined using a Delta V Advantage continuous-flow isotope ratio mass spectrometer coupled via a ConFlo IV to an IsoLink Elemental Analyser
Triplicate measurements were performed every five samples and after every ten unknown samples, in-house standards calibrated to the international reference materials USGS40, USGS41, IAEA-CH-6 ($\delta^{13}$C values $-26.39\%_o$, $+37.63\%_o$, $-10.45\%_o$, respectively), USGS25, IAEA-N-1 and IAEA-N-2 ($\delta^{15}$N values $-30.41\%_o$, $+0.43\%_o$, $+20.41\%_o$, respectively) were run in duplicate. Results are reported as permille ($\%_o$) relative to the international reference standards VPDB and AIR with $1\sigma$ precisions of $\pm 0.2\%_o$ ($\delta^{13}$C) and $\pm 0.3\%_o$ ($\delta^{15}$N).

3.3 Data treatment

Analytical errors were calculated as $1\sigma$ of triplicate measurements of every fifth sample analysed. To gain an overview of the data generated, principal component analysis (PCA; Bro and Smilde, 2014; Wold et al., 1987) was performed based on a correlation matrix of the determined elemental concentrations and stable isotope ratios ($\delta^{13}$C and $\delta^{15}$N) using Minitab statistical software (Minitab 14, Minitab Inc., USA). Significant differences between sample groups were assessed by one-way and two-way (fertilisation treatment and plant part) ANOVA followed by post-hoc Tukey tests, as well as two-sample two-tailed t-tests using Minitab. The statistical significance threshold was set at $\alpha = 0.05$.

4 Results

Fertilisation with all fertilisers led to an approximate doubling in the bere barley yield in terms of both straw and ear weights per m$^2$ when compared to unfertilised plots. Significantly higher ear weight per m$^2$ yields were observed for the 50 t/ha seaweed treatment than the 25t/ha seaweed treatment (manuscript in preparation).

A selection of the analytical results of the chemical and isotopic composition of the bere barley is shown in Table 1 (in full in Table S.6, supplementary material). The crop compositions vary subtly from plot to plot. To find which of these differences are characteristic for specific fertilisation treatments and thus important to consider further, principal component analysis (PCA) was performed, revealing systematic differences in the chemical and isotopic composition of grain, husks and straw. In a score plot of principal components 1 and 2 incorporating elemental concentration and isotopic composition results from all measured samples, the samples grouped primarily according to plant part, irrespective of fertilisation treatment, with the closest grouping observed for grain, and a wider spread for straw (Fig. S.1, supplementary material). When performing three separate PCAs, one for each studied plant part (grain, husk and straw), clear grouping based on fertilisation treatment was observable, and $\delta^{15}$N and concentrations of B, Mn, As, Sr, Mo, and Cd were identifiable as important parameters for differentiating between treatments (Fig. 1).

The composted seaweed fertiliser had $\delta^{13}$C values of $-19.5 \pm 0.2 \%_o$ (mean $\pm 1\sigma$ of triplicate measurements) and $\delta^{15}$N values of $6.7 \pm 0.3 \%_o$. The results of the analysis of the fertilisers are shown in full in the supplementary material (Table S.7, supplementary material).
Figure 1 Score plots (left) and loading plots (right) of three principal component analyses of selected element concentrations and isotope ratios (as indicated in the loading plot) for grain, straw and husk samples, indicating the changes induced by the different fertilisation treatments.
Table 1 Selected measured compositional data for seaweed-fertilised, NPK fertilised and unfertilised bere barley grain, husk and straw; values given as weighted averages of seven single measurements (one measurement each for four replicate plots, and triplicate measurements for one replicate plot) for each treatment type ± 1σ; letters indicate the results of one-way ANOVA and Tukey post-hoc tests, whereby different letters indicate significant differences (p < 0.05) between treatments for each sample type (separately for grain, husk and straw); where no significant differences were found between treatments for the same plant part, no letters are given; in the case of the $\delta^{15}$N values for husks where fewer data points were available and no ANOVA was performed, indicated by $\times$; complete set of data reported in Table S.1 in the supplementary material

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Fertilisation treatment</th>
<th>Mn (µg/g)</th>
<th>B (µg/g)</th>
<th>As (ng/g)</th>
<th>Sr (µg/g)</th>
<th>Mo (ng/g)</th>
<th>Cd (ng/g)</th>
<th>$\delta^{13}$C (%)</th>
<th>C (%)</th>
<th>$\delta^{15}$N (%)</th>
<th>N</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>grain</td>
<td>no fertiliser</td>
<td>12.1 ± 1.8 b</td>
<td>1.19 ± 0.11 bc</td>
<td>13.3 ± 3.2 b</td>
<td>3.3 ± 0.2 b</td>
<td>604 ± 97 a</td>
<td>50.4 ± 18.7</td>
<td>−27.2 ± 0.3</td>
<td>40.7 ± 0.4 a</td>
<td>5.0 ± 0.4 ab</td>
<td>1.5 ± 0.1</td>
<td>33 ± 1</td>
</tr>
<tr>
<td></td>
<td>25 t/ha seaweed</td>
<td>15.6 ± 1.1 a</td>
<td>1.22 ± 0.10 c</td>
<td>25.7 ± 5.3 ab</td>
<td>4.0 ± 0.3 a</td>
<td>409 ± 66 b</td>
<td>48.0 ± 5.8</td>
<td>−27.1 ± 0.5</td>
<td>39.7 ± 0.4 b</td>
<td>5.1 ± 0.5 a</td>
<td>1.4 ± 0.1</td>
<td>32 ± 1</td>
</tr>
<tr>
<td></td>
<td>50 t/ha seaweed</td>
<td>16.4 ± 2.3 a</td>
<td>1.52 ± 0.24 a</td>
<td>35.7 ± 8.6 a</td>
<td>4.2 ± 0.4 a</td>
<td>413 ± 57 b</td>
<td>65.9 ± 11.2</td>
<td>−27.3 ± 0.5</td>
<td>40.0 ± 0.8 ab</td>
<td>5.6 ± 0.3 a</td>
<td>1.6 ± 0.4</td>
<td>30 ± 6</td>
</tr>
<tr>
<td></td>
<td>NPK fertiliser</td>
<td>14.6 ± 0.8 b</td>
<td>1.06 ± 0.10 c</td>
<td>34.2 ± 22.0 ab</td>
<td>4.0 ± 0.3 a</td>
<td>465 ± 83 ab</td>
<td>46.6 ± 12.7</td>
<td>−27.1 ± 0.4</td>
<td>39.8 ± 0.5 ab</td>
<td>4.3 ± 0.4 b</td>
<td>1.4 ± 0.1</td>
<td>34 ± 4</td>
</tr>
<tr>
<td>husk</td>
<td>no fertiliser</td>
<td>14.2 ± 2.7 b</td>
<td>2.31 ± 0.36 b</td>
<td>46.8 ± 22.3 b</td>
<td>8.6 ± 0.8 b</td>
<td>463 ± 103 a</td>
<td>39.0 ± 11.0 b</td>
<td>−27.9 ± 0.7</td>
<td>44.7 ± 0.4</td>
<td>3.5 ± 0.3 x</td>
<td>1.5 ± 0.2 a</td>
<td>50 ± 24 b</td>
</tr>
<tr>
<td></td>
<td>25 t/ha seaweed</td>
<td>20.1 ± 3.4 ab</td>
<td>2.96 ± 0.70 ab</td>
<td>56.2 ± 14.4 b</td>
<td>10.3 ± 1.5 ab</td>
<td>293 ± 55 b</td>
<td>53.4 ± 14.3 ab</td>
<td>−27.8 ± 0.3</td>
<td>44.5 ± 0.2</td>
<td>3.8 ± 0.3 x</td>
<td>0.6 ± 0.5 b</td>
<td>134 ± 40 a</td>
</tr>
<tr>
<td></td>
<td>50 t/ha seaweed</td>
<td>22.0 ± 6.9 a</td>
<td>3.98 ± 0.90 a</td>
<td>100.0 ± 13.1 a</td>
<td>11.5 ± 0.8 a</td>
<td>326 ± 39 b</td>
<td>68.7 ± 15.7 a</td>
<td>−28.0 ± 0.4</td>
<td>43.9 ± 0.5</td>
<td>4.8 ± 1.3 x</td>
<td>0.8 ± 0.3 ab</td>
<td>79 ± 45 ab</td>
</tr>
<tr>
<td></td>
<td>NPK fertiliser</td>
<td>16.7 ± 2.6 ab</td>
<td>2.10 ± 0.25 b</td>
<td>55.9 ± 16.0 b</td>
<td>12.3 ± 1.3 a</td>
<td>362 ± 31 ab</td>
<td>46.7 ± 11.3 ab</td>
<td>−28.0 ± 0.6</td>
<td>43.9 ± 0.5</td>
<td>3.0 ± 0.2 x</td>
<td>1.1 ± 0.4 ab</td>
<td>52 ± 22 b</td>
</tr>
<tr>
<td>straw</td>
<td>no fertiliser</td>
<td>9.9 ± 2.9</td>
<td>2.95 ± 0.34 b</td>
<td>90.8 ± 16.7</td>
<td>29.0 ± 4.2</td>
<td>775 ± 242 a</td>
<td>76.2 ± 11.0 b</td>
<td>−29.5 ± 0.2</td>
<td>42.8 ± 0.5</td>
<td>4.4 ± 0.2 b</td>
<td>0.3 ± 0.1</td>
<td>145 ± 8</td>
</tr>
<tr>
<td></td>
<td>25 t/ha seaweed</td>
<td>16.1 ± 6.5</td>
<td>3.56 ± 0.22 b</td>
<td>78.2 ± 7.1</td>
<td>26.7 ± 1.7</td>
<td>386 ± 75 b</td>
<td>101.5 ± 18.0 b</td>
<td>−29.1 ± 0.5</td>
<td>42.5 ± 1.7</td>
<td>5.0 ± 0.2 a</td>
<td>0.3 ± 0.0</td>
<td>146 ± 10</td>
</tr>
<tr>
<td></td>
<td>50 t/ha seaweed</td>
<td>22.7 ± 12.4</td>
<td>4.64 ± 1.05 a</td>
<td>98.2 ± 19.7</td>
<td>28.9 ± 3.5</td>
<td>404 ± 83 b</td>
<td>147.8 ± 27.1 a</td>
<td>−29.4 ± 0.6</td>
<td>42.3 ± 1.0</td>
<td>5.5 ± 0.3 a</td>
<td>0.4 ± 0.1</td>
<td>138 ± 14</td>
</tr>
<tr>
<td></td>
<td>NPK fertiliser</td>
<td>14.2 ± 4.8</td>
<td>3.31 ± 0.31 b</td>
<td>78.2 ± 9.8</td>
<td>29.1 ± 3.8</td>
<td>447 ± 102 b</td>
<td>99.2 ± 16.6 b</td>
<td>−29.4 ± 0.4</td>
<td>42.0 ± 0.7</td>
<td>4.4 ± 0.5 b</td>
<td>0.3 ± 0.0</td>
<td>144 ± 11</td>
</tr>
</tbody>
</table>
4.1 Nitrogen ($\delta^{15}$N) and carbon ($\delta^{13}$C) stable isotope ratio results

The results of the $\delta^{15}$N analyses are shown in Table 1 and Fig. 2. Measured $\delta^{15}$N values for the 50 t/ha seaweed fertilised barley were significantly elevated when compared to those of the unfertilised control plots by $0.6 \pm 0.5$ % (average $\pm 1 \sigma$) in the case of grain (t-test, $p = 0.04$), and by $1.1 \pm 0.4$ % in the case of straw (t-test, $p = 0.001$). Values for 25 t/ha seaweed fertilised barley were between those of the unfertilised and 50 t/ha seaweed treatment, while the lowest values were for the NPK treated barley. In husks, highly variable nitrogen concentrations (0.2–1.6 % N; see also chaff in Bogaard et al., 2007) caused some inaccuracy for husk $\delta^{15}$N measurements for which reason these husk $\delta^{15}$N results were excluded here, but are shown in supplementary material (Table S.6).

No significant differences in $\delta^{13}$C values were observed between treatments (see Fig. 2), but significant differences between plant parts were observable, with average grain $\delta^{13}$C values elevated by $0.8 \pm 0.6$ % and $2.2 \pm 0.6$ % compared to husks and straw, respectively (one-way ANOVA followed by Tukey indicate the 3 means to be significantly different).

4.2 Strontium (Sr) concentrations

The results of the Sr analyses are given in Table 1 and Fig. 3. Sr concentrations in grain and husks from 25 t/ha, 50 t/ha seaweed and NPK fertilised plots were elevated by factors of 1.2 to 1.4 (on average) when compared to grain husks from unfertilised plots (significantly different at $p<0.05$). In the case of straw, no significant difference in Sr concentrations was observed between treatment groups (one-way ANOVA: $F(3,16) = 0.56$, $p = 0.7$). When comparing between plant parts, the highest Sr concentrations were observable in straw (23 to 35 µg/g across all treatments) and the lowest in unfertilised grain (3.0 to 3.6 µg/g).
Figure 3 Strontium concentrations in bere barley following various fertilisation treatments; the circles in each column represent results from five samples (one from each replicate plot) and the black diamonds indicate the average of these values; within each column different letters for samples from the same plant part (grain, husk, or straw) indicate significant differences (p < 0.05: one-way ANOVA and Tukey post-hoc tests)

4.3 Effect of seaweed fertilisation on other element concentrations

Other elements with significantly elevated concentrations in samples from the 50 t/ha seaweed fertilised plots compared to samples from unfertilised plots included arsenic (As; t-test, p ≤ 0.004 for husks and grains, but p = 0.5 for straw), boron (B; t-test, p ≤ 0.04 for husk, grain and straw), manganese (Mn; t-test, p = 0.02 for grain, but p ≥ 0.07 for husk and straw) and cadmium (Cd; t-test, p ≤ 0.01 for husk and straw, but p = 0.2 for grain).

However, in the case of molybdenum (Mo), the opposite was found, whereby concentrations in unfertilised grain, husk and straw were significantly elevated when compared to their 25 and 50 t/ha seaweed-fertilised and NPK-fertilised counterparts (t-tests, p ≤ 0.04 for husk, grain and straw; except husk from NPK plots, where p = 0.07). No significant differences in Fe, Cr, Co, Zn or Pb concentrations were found between 50 t/ha seaweed-fertilised plots and unfertilised plots in grain, husk and straw (t-tests, all p ≥ 0.1).

5 Discussion

5.1 Effect of seaweed fertilisation on plant nitrogen (N)

The increases of 0.6 ± 0.5 ‰ (in grain) and 1.1 ± 0.4 ‰ (in straw) in δ¹⁵N values may not appear to be particularly large when compared to the size of a typical trophic level enrichment (i.e. 3 to 5 ‰ in bone collagen; Bocherens and Drucker, 2003; Hedges and Reynard, 2007). However, since this study was undertaken on soil that had been fertilised in previous years (i.e. already improved soil with comparatively good initial nutrient status), it is likely that had no previous fertilisation taken place, or in particularly poor soils, seaweed-fertilisation would have had a greater effect.

Additionally, the recovery of intact (though weathered) pieces of seaweed from the trial plots after harvest also indicate long-term effects due to seaweed fertilisation, as further seaweed decay was
yet to take place (beyond the end of the trial period). Moreover, compared to historical seaweed-fertilisation practices with rates as high as 50 t/ac (124 t/ha) and multiple applications per year (Fenton, 1997; Russell, 1910; Sauvageau, 1920), the single application fertilisation rates of 25 t/ha and 50 t/ha employed here are still very low. However, the difference between the 25 t/ha and 50 t/ha seaweed fertilised plots in this trial indicates that higher seaweed application rates lead to a higher degree of enrichment of $^{15}$N. Thus, higher application rates and the repeated application of seaweed within the same season of growth over decades of farming can be expected to lead to higher $\delta^{15}$N values.

The $^{15}$N enrichment observed here appears to be only slightly smaller than that arising from the application of farm-yard manure in comparable short-term experiments (Choi et al., 2006; Fraser et al., 2011), while long-term experiments (over 100 years) with animal manure have led to higher degrees of enrichment (e.g. 9 ‰ in one particular trial; Fraser et al., 2011), giving further indication that effects of long-term fertilisation with seaweed may be similarly substantial. Thus, studies of $\delta^{15}$N in archaeological charred cereal grains undertaken to identify past agricultural practices and growing conditions, such as fertilisation with animal manure (e.g. Gron et al., 2017; Kanstrup et al., 2011), should also consider the possibility of seaweed fertilisation, particularly in coastal areas.

In order to apply this to the study of consumer skeletal material, it needs to be considered that consumer collagen $\delta^{15}$N values are primarily affected by dietary protein $\delta^{15}$N values. Here, only total (non-compound-specific) $\delta^{15}$N values were determined but it has been shown that fertilisation-induced changes to total $\delta^{15}$N reflect changes to the protein $\delta^{15}$N composition (Bol et al., 2004; Egle et al., 2008; Styring et al., 2014a, 2014b).

Substantial consumption of seaweed-fertilised crops particularly by weaned herbivores (where the predominant sources of dietary protein are plants; Hedges and Reynard, 2007) but also by omnivores consuming low amounts of protein-rich foods may therefore be assumed to elevate skeletal $\delta^{15}$N values compared to consumers of non-fertilised crops (grown under otherwise identical conditions). Even when seaweed-fertilised crops are not directly consumed, elevated $\delta^{15}$N values of these primary consumers can also be transferred up the food chain (Hedges and Reynard, 2007), introducing issues of equifinality both in simple and complex diets. Seaweed-fertilisation may thus cause overestimations of trophic levels throughout the food chain, which may involve both overestimation of the amount of animal products consumed, and overestimation of the trophic level of the consumed animals.

### 5.2 Effect of seaweed fertilisation on plant carbon (C)

Since fertilisation with seaweed also introduces marine carbon, this may be expected to have a similar effect on $\delta^{13}$C as sea spray, which has been asserted to lead to elevated $\delta^{13}$C values in plants because plant roots also take up CO$_2$ and HCO$_3^-$ from the soil (Göhring et al., 2018). However, no significant differences in $\delta^{13}$C values attributable to fertiliser application were observed here. This may be due to the short length of the field trial, but considering the relatively low amount of carbon taken up by plant roots and translocated to the upper parts of the plant compared to that taken up from the atmosphere (Biscoe et al., 1975; Farrar and Jones, 2008; Zamanian et al., 2017), a more significant factor for both seaweed fertilisation and sea spray effects may be salt-stress.
Salt stress has been shown to cause elevated $\delta^{13}$C values in plants by inducing partial closing of stomata (van Groenigen and van Kessel, 2002), thus introducing what might be interpreted as a more marine isotope ratio without introducing marine carbon. This difference in origin of carbon in plants is of particular relevance to radiocarbon dating due to the marine reservoir effect. However, as no significant differences in $\delta^{13}$C due to fertilisation treatments were observed here, these long-term effects are likely comparatively small, and e.g. the systematic differences between $\delta^{13}$C values in different plant parts (also previously reported by e.g. Bogaard et al., 2007; Bol et al., 2005; Kanstrup et al., 2011; Sembayran et al., 2008; Serret et al., 2008; Zhao et al., 2001) have a much more immediate relevance for archaeological interpretations.

5.3 Effect of seaweed fertilisation on strontium (Sr)

Fertilisation with seaweed led to elevated Sr concentrations and Sr/Ca ratios in the fertilised crops (grain and husk). Since the extent to which Sr may substitute for Ca in skeletal bioapatite is affected (at least in part) by dietary Sr concentrations (Bentley, 2006; Sponheimer et al., 2005), these results support suggestions that the elevated Sr concentrations found in some archaeological skeletal material from coastal areas may be due to seaweed fertilisation (Evans et al., 2012; Montgomery et al., 2007, 2003; Montgomery and Evans, 2006). Additionally, the elevated Sr concentrations in grain and husk samples from seaweed-fertilised support hypotheses that strontium isotope ratio $^{87}$Sr/$^{86}$Sr of crops would become more marine due to seaweed fertilisation (Evans et al., 2012; Montgomery et al., 2007, 2003; Montgomery and Evans, 2006) when growing crops on soils with non-marine Sr isotope ratios. Strontium isotope ratio measurements were not performed for this study, as $^{87}$Sr/$^{86}$Sr isotope ratios of both seaweed and soil would be expected to be marine due to the close proximity of the trial site to the ocean (Evans et al., 2010; Whipkey et al., 2000). Under these circumstances, no significant differences in $^{87}$Sr/$^{86}$Sr between seaweed-fertilised and unfertilised crops would be expected.

5.4 Effect of seaweed fertilisation on other elements

Cd, B, Mn and As concentrations were also elevated in at least some parts (grain, husk or straw) of the seaweed-fertilised barley. It has been reported that As is elevated in soil following seaweed fertilisation, but washes out in subsequent years (Castlehouse et al., 2003), which is consistent with the results presented here. Elevated elemental concentrations due to fertilisation with seaweed appear to be intuitive; however, it should be noted that in several cases, no increase in concentrations were observed (e.g. in the cases of Fe and Pb), while in the case of Mo, lower concentrations were found in seaweed-fertilised crops than in unfertilised crops. Such differences in uptake and translocation are in part related to complex interactions within the soil that affect the solubility and therefore plant uptake of these elements. Particularly the lower concentrations of Mo in fertilised crops (regardless of the type of fertiliser) compared to unfertilised crops in this trial may seem counter-intuitive: Both fertilisers introduce additional Mo to the soil (see Table S.7, supplementary material), and previous studies have shown that when adding only Mo to a Mo deficient soil, an increase in grass Mo concentrations is observable (Johnson et al., 1952). However, in the case of seaweed fertilisation, not only Mo is added to the soil,
but a range of elements in various chemical forms that may interact with, and even counteract each other. For example, elevated sulphate concentrations and lower soluble phosphate concentrations may both suppress molybdate uptake, while soils with poor drainage and rich in organic matter generally accumulate soluble Mo (reviewed in Kaiser et al., 2005). The case of Mo therefore serves to illustrate the complexities involved in soil chemistry, element bioavailability and plant uptake mechanisms that can all lead to higher/lower translocation and concentrations in plants. This shows the necessity of experimentally testing assumptions as to how crops are affected by different fertilisers in field trials such as this one, and of considering each element individually. Further study of the effects of seaweed-fertilisation on the trace elemental composition of crops may be of benefit to the development of trace elemental composition analysis of enamel as a means of improving the identification of direct seaweed consumption in complex diets.

5.5 Implications for archaeological studies

Historical evidence indicates the widespread use of seaweed as a fertiliser across coastal Europe during recent centuries, causing yield increases of comparable extent to fertilisation with animal manure (Hendrick, 1898). As the availability of both animal manure and draught animals have been proposed to be key limiting factors for fertilisation practices in Neolithic Europe (Bogaard, 2012; Gron et al., 2017), it seems plausible (or even likely) that fertilisation with seaweed, which was widely available along the coastline, was practiced from the Neolithic onwards (Bell, 1981; Milner et al., 2004; Schulting et al., 2010). Therefore, the chemical study of skeletal remains needs to consider the effects of fertilisation with seaweed.

Previous work has already explored the implications of fertilisation with animal manure for dietary reconstructions with respect to δ¹⁵N values (e.g. Bogaard et al., 2013, 2007; Styring et al., 2015; Szpak, 2014), and these considerations also apply to seaweed fertilisation, in that consumer trophic levels may be overestimated when fertilisation with seaweed is not accounted for. The direct study of δ¹⁵N in archaeological charred cereal grains as well as animal remains could be instrumental in resolving problems of equifinality in mixed diets.

However, while determining δ¹⁵N values in archaeological crop samples would aid in dietary reconstructions of animal and human diets, their use in identifying past fertilisation practices is complicated as elevated plant δ¹⁵N values can arise from a variety of causes (reviewed in Craine et al., 2015). While this study shows that it is likely possible to distinguish between crops fertilised with animal manure and seaweed on the basis of trace element concentrations in modern field trials on the same soil, diagenesis would presumably prevent this from succeeding with archaeological crop samples in most cases.

The lack of a significant effect of seaweed fertilisation on crop δ¹³C indicates that short-term fertilisation with seaweed (and/or other marine materials) is unlikely to induce significantly higher δ¹³C values in crops. Hence, e.g. the elevated δ¹³C values found in sheep as compared to cattle in Orkney (Scotland) during the Neolithic and Bronze Age (as discussed in Jones and Mulville, 2016) are perhaps more likely to have arisen from the occasional direct consumption of seaweed (Balasse et al., 2009, 2005; Hansen et al., 2003) rather than from the consumption of marine-fertilised terrestrial plants. Growing fertilised crops requires significantly more labour than the direct consumption of
seaweed in coastal areas, and particularly in times of scarcity, animals would have been unlikely to feed primarily on fertilised crops when such crops could instead be consumed by humans. It is therefore important to separate the direct consumption of seaweed (on the one hand) and seaweed-fertilised terrestrial crops (on the other). This may be done by studying $\delta^{13}$C values of skeletal material; but when seaweed is only a small part of the total diet, its contribution may well be unidentifiable by $\delta^{13}$C alone, and the additional study of trace element concentrations may aid interpretations.

This study has also shown that fertilisation with seaweed introduces significant amounts of Sr into the terrestrial food web, which may help explain the elevated Sr concentrations with marine $^{87}$Sr/$^{86}$Sr ratios observed in some coastal populations (cf. Evans et al., 2012). The elevated Sr/Ca ratios in grain and husks suggest that the Sr/Ca ratio in skeletal material, which has been used as a biochemical indicator of past diet (Peek and Clementz, 2012; Sponheimer et al., 2005; Sponheimer and Lee-Thorp, 2006), is likely also affected by the consumption of seaweed-fertilised crops. Similarly, seaweed-fertilisation of terrestrial crops may complicate attempts to utilise trace element concentrations in tooth enamel to identify seaweed consumption.

6 Conclusion

This study demonstrates that fertilising terrestrial crops with seaweed can lead to significant changes in plant chemical and isotopic composition, even when fertilisation was only undertaken once, particularly with respect to $\delta^{15}$N and Sr concentrations. In the case of $\delta^{15}$N, an elevation by 0.6 ± 0.5 ‰ (average ± 1σ) in grain and by 1.1 ± 0.4 ‰ in straw was observed upon fertilisation with 50 t/ha seaweed, which is not a substantial increase in trophic level terms, but this likely stacks up over several fertilisation cycles. This effect could then lead to an overestimation of the trophic level of the consumers and their predators in dietary studies. No increase in $\delta^{13}$C upon seaweed fertilisation was observed here, indicating that seaweed fertilisation is unlikely to significantly influence $\delta^{13}$C values in the skeletal tissues of animal and human consumers.

Seaweed fertilisation also led to increased Sr concentrations in barley grain and husk, indicating that seaweed-fertilisation may contribute to long-term enrichment of soil Sr concentrations. This implies that on soils with originally non-marine $^{87}$Sr/$^{86}$Sr ratios, seaweed-fertilisation may induce more marine Sr isotope ratios in cereal grain. In contrast, depleted concentrations of Mo in seaweed-fertilised barley (when compared to unfertilised barley) indicate that the addition of certain elements to the soil does not necessarily lead to increased translocation into crops. This underlines the importance of testing assumptions and systematically mapping out baseline data using modern field trials to enable accurate archaeological conclusions. Further research into the longer-term effects of seaweed fertilisation on crops has the potential to contribute significantly to our understanding of past coastal populations and their dietary practices.
7 Author contributions
Study conception and literature review: MB
Field trial design and implementation: PM, MB, BD, JW, IM
Yield evaluation and sample preparation: BD, MB
MP-AES, ICP-MS and IRMS measurements: MB, AR, KS
PCA, figure preparation and first draft: MB
Revision of manuscript: all authors
All authors read and approved the final draft prior to submission.

8 Acknowledgments
This research was partially funded by the European Social Fund and Scottish Funding Council as part of Developing Scotland’s Workforce in the Scotland 2014–2020 European Structural and Investment Fund Programme. The contribution of staff from the University of the Highlands and Islands’ Agronomy Institute and the James Hutton Institute to the field trial was supported by Rural and Environment Science and Analytical Services (RESAS) funding from the Scottish Government. GPS geolocation was performed by archaeologists of the Orkney Research Centre for Archaeology (ORCA). Stable isotope ratio measurements were performed at the Scottish Universities Environmental Research Centre (SUERC), East Kilbride, and elemental composition analysis was performed at the Trace Element Speciation Laboratory, Aberdeen (TESLA). MB would like to thank IM’s family for their help collecting and storing the decomposing seaweed.

9 Supplementary Material
Additional information on the field trial as well as Fig. S.1, Table S.1, Table S.2, Table S.3, Table S.4, Table S.5, Table S.6 and Table S.7 can be found in the online supplementary material to this article at https://doi.org/10.1016/j.jas.2019.02.003.

10 References
from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 46–53. doi:10.1002/oa.662


Martin, M., 1716. A description of the Western Islands of Scotland, 2nd ed. A. Bell, London, UK.


applications on plant and soil 15N and 13C values. 22 1735–1740.