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decisions by producing indicators that describe ecosystem health and 

function. Applying uncertainty estimates to ENA indicators lets end-users 

draw stronger inferences and can increase confidence in model results. 

However, few studies developing these indicators for marine management 

estimate uncertainty due to data limitations and computational 

challenges. In this study, we investigate how the incorporation of 

dietary uncertainty data can strengthen model-derived ENA indicators 

inferences using an Ecopath model of the Irish Sea in conjunction with 

Linear Inverse Modelling. We used a Monte Carlo approach to generate ten 

thousand data-bound parameterisations for the Irish Sea food web and 

provided plausible distribution estimates for Ecopath-derived ENA 

indicators. ENA results capture the plausible range of state-indicators 

and provide robust estimates of the control exerted by food web 

components over others in the Irish Sea. Notably, higher trophic 

components, such as mammals, birds, and elasmobranchs are controlled by 

mid-to-low trophic components, such as small pelagic fish, invertebrates, 

and plankton, whilst in all plausible network parameterisations, 

fisheries discards played an important role in the flow of energy to 

groups such as Nephrops (Norway lobster), crabs and lobsters, and 

seabirds. These results bolster our understanding of network dynamics in 

the Irish Sea and demonstrate how information derived from ENA indicators 

can have implications for effective and sustainable ecosystem based 

management. Finally, the methods established here represent an important 

step in the maturation of ecosystem modelling and ENA for management 

purposes. 
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Diet uncertainty analysis strengthens model-derived indicators of food web 1 
structure and function 2 

Jacob W. Bentley1*, David Hines2, Stuart Borrett2, 3, Natalia Serpetti1, Clive Fox1, David G. 3 

Reid4, Johanna J. Heymans1, 5  4 

Abstract 5 

Ecological Network Analysis (ENA) can inform marine management decisions by producing 6 

indicators that describe ecosystem health and function. Reporting ENA indicators with 7 

uncertainty boundaries lets end-users draw stronger inferences and can increase 8 

confidence in model results. However, few studies developing these indicators have 9 

estimated uncertainty due to data limitations and computational challenges. In this study, 10 

we used Linear Inverse Modelling with an Ecopath model of the Irish Sea to investigate 11 

how the incorporation of uncertainty in dietary data can strengthen inferences based on 12 

model-derived ENA indicators. A Monte Carlo approach was used to generate ten thousand 13 

data-bound parameterisations for the Irish Sea food web and provide plausible distribution 14 

estimates for functional group diets. ENA results captured the plausible range of state-15 

indicators and provided robust estimates of the control exerted by components within the 16 

foodweb. Results suggest that, higher trophic components, such as mammals, birds, and 17 

elasmobranchs in the Irish Sea are controlled by mid-to-low trophic components, such as 18 

small pelagic fish, invertebrates, and plankton. Fisheries discards also played an important 19 

role in the flow of energy to groups such as Nephrops (Norway lobster), crabs and lobsters, 20 

and seabirds. These results bolster our understanding of food web dynamics in the Irish 21 

Sea and demonstrate how information derived from ENA indicators can have implications 22 

for effective and sustainable ecosystem based management. Finally, the methods 23 

established here represent an important step in the maturation of marine ecosystem 24 

modelling and ENA for management purposes.  25 

Keywords: food web, Ecopath, Ecological Network Analysis, linear inverse modelling, 26 
ecosystem based management 27 

1Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK; 28 

Jacob.bentley@sams.ac.uk, Clive.fox@sams.ac.uk, Natalia.serpetti@sams.ac.uk, 29 

sheilaheymans@yahoo.com 30 
2Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, 31 

USA; deh9951@gmail.com borretts@uncw.edu  32 
3Duke Network Analysis Center, Social Science Research Institute, Duke University, Durham, NC 27708, USA 33 
4Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673; David.Reid@Marine.ie  34 
5European Marine Board, Wandelaarkaai 7, 8400 Oostende, Belgium 35 

 36 

 37 

*Manuscript
Click here to view linked References

mailto:Jacob.bentley@sams.ac.uk
mailto:Clive.fox@sams.ac.uk
mailto:Natalia.serpetti@sams.ac.uk
mailto:deh9951@gmail.com
mailto:borretts@uncw.edu
mailto:David.Reid@Marine.ie
http://ees.elsevier.com/ecolind/viewRCResults.aspx?pdf=1&docID=30755&rev=0&fileID=450121&msid={B3E87925-2D88-434D-8E2C-06A5DEEC78AB}


 

 2 

1. Introduction 38 

The production and monitoring of state-indicators that describe the structure and function 39 

of ecosystems has emerged as a key element for operationalizing Ecosystem Based 40 

Management (EBM) (Link and Browman, 2017). Such indicators may be assessed 41 

temporally within systems but may also be compared across-systems (Coll et al., 2016, 42 

Uusitalo et al., 2016). Within the European Union (EU), EBM is being enacted through the 43 

Marine Strategy framework directive whose aim is for Member States to achieve Good 44 

Environmental Status in Europe’s seas. The Directive is framed around 11 descriptors 45 

including food web structure and functioning (Descriptor 4). Agreeing on suitable 46 

approaches for this descriptor is challenging for the management community, but trophic 47 

models that characterise the energy flows within marine food webs, are likely to be a useful 48 

approach (Piroddi et al., 2015, Niquil et al., 2014).  49 

The Ecopath with Ecosim (EwE) modelling approach (Christensen et al., 2005) is based on 50 

modelling energy flow and so is capable of providing such flow based indicators (Dame and 51 

Christian, 2006, Heymans and Tomczak, 2016, Longo et al., 2015). EwE has been applied 52 

to hundreds of ecosystems around the world (Colléter et al., 2015), with over 500 unique 53 

models documented in EcoBase (see website at http://sirs.agrocampus-ouest.fr/EcoBase/). 54 

Although EwE has been predominantly used to investigate the impacts of fishing (Pauly, 55 

2000), more recent studies have investigated the impacts of ocean warming (Bentley et al., 56 

2017, Serpetti et al., 2017), invasive species (Corrales et al., 2017), the EU landings 57 

obligation (Celić et al., 2018), and pollutants (Tierney et al., 2018, Walters and Christensen, 58 

2018).   59 

For ecosystem models to be used as a basis for providing informative and robust advice to 60 

managers, it is important that the uncertainty in model predictions is acknowledged (Gal et 61 

al., 2014, Crosetto et al., 2000). A widely used approach is to conduct uncertainty analyses 62 

to investigate how model outputs vary when input parameters are changed (Gardner et al., 63 

http://sirs.agrocampus-ouest.fr/EcoBase/
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1981, Hill et al., 2007, Uusitalo et al., 2015, Soldaat et al., 2017). For example, Monte Carlo 64 

(MC) methods randomly draw input parameters from assigned distributions to generate a 65 

distribution of plausible outcomes (Kennedy and O'Hagan, 2001). Within EwE the MC 66 

routine allows users to search for Ecopath input variable combinations to test model 67 

sensitivity and improve the fit of model predictions to time series data (Christensen and 68 

Walters, 2004, Heymans et al., 2016). The recent development of ECOIND (Coll and 69 

Steenbeek, 2017) and EcoSampler (Steenbeek et al., 2018) provides users with an even 70 

more sophisticated MC framework to assess the impact of input parameter uncertainty. MC 71 

analysis in EwE can be used to access the impact of input uncertainty on outputs such as 72 

biomass predictions, catch predictions, and indicators of system health and functioning. 73 

Ecological Network Analysis (ENA) is used to analyse and quantify environmental 74 

interactions and the structure of ecological networks (Ulanowicz, 2012, Ulanowicz, 1980, 75 

Patten et al., 1976, Borrett et al., 2018). ENA products have been proposed as indicators 76 

that can quantify the health, resilience, maturity, and flow dynamics of marine systems 77 

(Longo et al., 2015, de Jonge et al., 2012, de Jonge, 2007). More specifically OSPAR’s 78 

Intersessional Correspondence Group for Coordination of Biodiversity Assessment and 79 

Monitoring (ICG-COBAM) proposed a list of nine indicators, including those based on ENA 80 

for capturing marine food-web characteristics (Niquil et al., 2014). Furthermore, ENA can 81 

also be used to define and identify the roles of components within networks (Patten and 82 

Auble, 1981, Jordán et al., 2007, Estrada, 2007, Borrett, 2013), for example control analysis 83 

identifies the dependencies of components on one another by assessing the magnitude 84 

and transition of energy between donors and recipients (Patten, 1978, Fath and Patten, 85 

1999, Schramski et al., 2006, Schramski et al., 2007). Such indicators may be useful for 86 

management advice as they identify the components which regulate the flow of energy 87 

through an ecosystem network (Hines et al., 2016).  88 
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Single estimates for ENA metrics are commonly taken from deterministic models, such as 89 

Ecopath, without exploring their uncertainty (Uusitalo et al., 2015). Estimating uncertainty 90 

is important if indicators are to be trusted (Burgass et al., 2017).  91 

ENAtool, an EwE routine developed by Guesnet et al. (2015), applies Linear Inverse 92 

Modelling (LIM) to provide users with the means to incorporate input parameter uncertainty 93 

into the calculation of ENA indicators to generate ranges of plausible values. Uncertainty in 94 

this instance is derived from assigned data pedigree confidence intervals, and whilst 95 

increasing the statistical inference gained from ENA results, this approach is unable to 96 

address the unique uncertainty ranges of individual predator-prey flows, which vary 97 

asymmetrically around the mean. Recent advances in uncertainty analyses for ENA adapt 98 

LIM techniques (Vézina and Platt, 1988, Kones et al., 2009) to investigate how unique and 99 

asymmetric flow uncertainty affects model outcomes (Hines et al., 2018).  This approach 100 

allows us to explore uncertainty at a higher flow resolution and estimate indicators, such as 101 

control, which are not calculated by EwE.  102 

Using recent advances in network ecology (Hines et al., 2018), this study aims to address 103 

the impact of heterogeneous flow uncertainty, arising from uncertain diet information, on 104 

ENA indicators and control measures derived from Ecopath models. We demonstrate the 105 

application of these new methods using an Ecopath model of the Irish Sea (Bentley et al., 106 

2018) with diet ranges derived from long-term stomach records. 107 

2. Methods 108 

In the context of the model used in this work, the Irish Sea covers the extent of the 109 

International Council for the Exploration of the Sea (ICES) division VIIa (Figure 1), the area 110 

of which is approximately 58,000 km2 (Vincent et al., 2004).  111 
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Figure 1. Map of the British Isles and Ireland (a) with inset (b) showing the extent of the Irish Sea Ecopath 

model (shaded ocean area).  

2.1. Ecopath model 112 

Ecopath (version 6.6 beta) (Christensen et al., 2005) was used to construct a mass-113 

balanced snapshot of the Irish Sea ecosystem in 1973 (Bentley et al., 2018). The model is 114 

comprised of 41 functional groups ranging from plankton to marine mammals. Atlantic cod 115 

(Gadus morhua), whiting (Merlangius merlangus), haddock (Melanogrammus aeglefinus) 116 

and European plaice (Pleuronectes platessa) are the main commercially exploited fish 117 

species in the Irish Sea and are split into adult and juvenile functional groups (Figure 2). 118 

Estimates for biomass (𝐵), production/biomass (𝑃/𝐵) and consumption/biomass (𝑄/𝐵), 119 

were sourced from ICES stock assessments and working group reports, local studies, 120 

online repositories, such as FishBase (Froese and Pauly, 2017) and SeaLifeBase 121 

(Palomares and Pauly, 2017), or were empirically calculated (Bentley et al., 2018). The Irish 122 

Sea model was constructed following best practice methods (Heymans et al., 2016) and 123 
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ecological rules of thumb (Link, 2010) to maintain ecological realism. See Bentley et al. 124 

(2018) for the full description of all parameters. 125 

Fishing fleets are fundamental components in most Ecopath models and contribute towards 126 

the export of energy from the network. Fishing fleets in the Irish Sea model (otter, Nephrops, 127 

beam and pelagic trawls, gill nets, pots, dredges and other gears) reflect those deemed 128 

most important by fishers during stakeholder meetings of the ICES benchmark workshop 129 

WKIrish (ICES, 2015, ICES, 2018) (see website at http://www.ices.dk/community/ 130 

groups/Pages/WKIrish.aspx). Fisheries captures were parametrised using landings and 131 

discards information from the Scientific, Technical and Economic Committee for Fisheries 132 

(STECF) and ICES (Bentley et al., 2018).  133 

 

Figure 2. Energy flow and biomass diagram for the Irish Sea Ecopath food web model. Functional groups 

and fleets are represented by nodes, the relative size of which denotes their biomass in the ecosystem. Lines 

represent the flow of energy and the y-axis denotes group trophic level. 

2.2. Diet composition 134 
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Diet data for fish functional groups were obtained from long-term fish stomach records 135 

available through the Cefas DAPSTOM initiative (integrated DAtabase and Portal for fish 136 

STOMach records) (Pinnegar, 2014). Prey items were combined to reflect the functional 137 

group structure in the Ecopath model. The default data format in DAPSTOM is counts of 138 

prey per predator, which were converted into weight (kg) using average estimates for each 139 

prey species. Average diets, along with plausible ranges were then generated for each fish 140 

functional group based on annual data (1960 - 2017). Where predator functional groups 141 

included multiple species (e.g. the ‘other demersal fish’ functional group), the contribution 142 

of prey to the overall group diet was prorated by predator biomass. Diets for marine 143 

mammals, seabirds and invertebrates were taken from literature (Bentley et al., 2018).  144 

Traditionally, Ecopath diet matrices are altered ad-hoc during model-balancing (Morissette, 145 

2005). In this study we used the stomach records to establish a data-based parameter field 146 

to move within when balancing the model (Bentley et al., 2018). An example of an Ecopath 147 

diet with asymmetric uncertainty from DAPSTOM records is shown in Figure 3 for adult 148 

cod. 149 

2.3. Conversion of Ecopath model into a network object using enaR 150 

Ecosystem flow networks (such as those described by Ecopath consumption matrices) are 151 

composed of nodes and edges and can be used to derive ENA indicators and measures of 152 

control (Heymans and Baird, 2000, Fath et al., 2007, Kay et al., 1989). Nodes represent 153 

living or non-living resource pools and edges connect nodes through material or energy 154 

transfer. . Although selected ENA indicators and analyses can be calculated within Ecopath, 155 

the uncertainty approach and control analysis used in this study cannot currently be 156 

produced by the EwE software. The following were therefore extracted from the Irish Sea 157 

Ecopath model and reformatted for analysis with enaR package (version 3.0.0) (Borrett and 158 

Lau, 2014): (1) a flow matrix (Ecopath consumption matrix), (2) network inputs (gross 159 

primary production in the Irish Sea), (3) network exports (detritus and fisheries exports), (4) 160 

respiration (calculated in EwE outputs) and (5) node storage (Ecopath biomass). Data was 161 
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input as t km-2. As Ecopath does not provide estimates of gross primary productivity or 162 

respiration for primary producers (Heymans and Baird, 2000), methods for calculating 163 

respiration and gross production for aquatic plants were taken from a model equation 164 

proposed by Aoki (2006). Gross production (𝑎) is consumed by respiration(𝑟), 165 

production(𝑝), and flow to detritus (𝑑): 166 

In accordance with Aoki (2006), we assumed that: 167 

 

Figure 3. Diet of Adult Atlantic cod in the Irish Sea. The bars illustrate the estimates incorporated into Ecopath 

and the error bars show the plausible range of diet proportions for each prey based on the 95 % confidence 

intervals observed in the DAPSTOM records from 1960-2017. See Bentley et al (2018) for full data 

description. 

 
𝑎 = 𝑟 + 𝑝 + 𝑑 

 

(1) 
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𝑟 = 𝜎𝑎 

 

(2) 

where 𝜎 is the annual respiration-gross production ratio. According to equations 1 and 2: 168 

 𝑟 = (𝑝 + 𝑑)
𝜎

1 − 𝜎
 (3) 

𝑟 can therefore be estimated from values of 𝑝, 𝑑 and 𝜎, where 𝑝 and 𝑑 are available from 169 

Ecopath. Values of 𝜎 for phytoplankton have been estimated to be 0.42 y-1 for Georges 170 

Bank (Riley, 1946), Narragansett Bay, Delaware Bay and Chesapeake Bay (Monaco and 171 

Ulanowicz, 1997) and 0.44  y-1 for Lake Biwa, Lake Yunoko, Lake Suwa and Lake Kojima 172 

(Mori and Yamamoto, 1975). For the purpose of this model, as previously adopted by Aoki 173 

(2006), the average value of 0.4 was used for phytoplankton and 0.65 was adopted for 174 

seaweed Aoki (2006). 175 

Upper and lower limits for each network edge (flows, inputs, exports and respirations) were 176 

calculated using the 95% confidence intervals for prey contribution to predator diet from the 177 

DAPSTOM records. For groups other than fish, where no dietary uncertainty data were 178 

available, symmetric upper and lower network parameter limits were set at +/- 25% of the 179 

balanced models estimates. 180 

2.4. Generating Plausible Network Parameterisations  181 

We applied the upper and lower constraints for each network edge using the 182 

enaUncertainty function for the enaR package in R (Hines et al., 2018, Lau et al., 2017). 183 

This function used a LIM algorithm (van den Meersche et al., 2009, Soetaert et al., 2009) 184 

in combination with MC sampling to generate ten thousand balanced network permutations 185 

of the Irish Sea network, each of which had edge values that fell within the specified 186 

plausible upper and lower flow limits.  Each network parameterisation in the resulting set of 187 

networks was considered equally plausible, and analyses were conducted across the entire 188 

set to evaluate uncertainty in ENA results. 189 
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2.5. ENA: flow analysis 190 

Four commonly used flow-based network statistics to quantify the movement of energy 191 

through the network; namely, total system through flow (TST), Finn’s cycling index (FCI), 192 

indirect flow intensity (IFI) and average path length (APL) were calculated using the 193 

enaFlow analysis in the enaR package. TST is a measure of the amount of material moving 194 

through a system (Finn, 1976), calculated as: 195 

 
𝑇𝑆𝑇 = ∑(𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑙𝑜𝑤𝑠 + 𝐼𝑛𝑝𝑢𝑡𝑠) 

 

(4) 

TST is seen as an indicator of the size or activity of the system (Finn, 1976). FCI is 196 

calculated as: 197 

 
𝐹𝐶𝐼 =

𝐶𝑦𝑐𝑙𝑒𝑑 𝑓𝑙𝑜𝑤
𝑇𝑆𝑇

 

 

(5) 

where cycled flow is defined as material that is recycled (passes through the same node 198 

more than once) before exiting the network (Finn, 1980, Finn, 1976). FCI indicates the 199 

retention time of material within a system (Baird and Ulanowicz, 1993) and can be used to 200 

interpret ecosystem stability (Vasconcellos et al., 1997) and health (Wulff and Ulanowicz, 201 

1989). IFI is the proportion of TST derived from indirect pathways (fluxes over two or more 202 

edges) (Borrett et al., 2006, Salas and Borrett, 2011, Higashi and Patten, 1986). IFI is 203 

calculated as: 204 

 
𝐼𝐹𝐼 =

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑓𝑙𝑜𝑤
𝑇𝑆𝑇

 

 

(6) 

Indirect effects are critical components of complex adaptive systems that can act as a 205 

stabilising force in the face of external perturbations (Borrett et al., 2006). APL is the 206 

average number of groups an inflow or outflow passes through (Finn, 1976) and is 207 

calculated as:  208 
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𝐴𝑃𝐿 =

𝑇𝑆𝑇
∑ 𝐼𝑛𝑝𝑢𝑡𝑠

 

 

(7) 

APL is a measure of the retention time of material within the system and is expected to be 209 

higher in systems with high degrees of flow diversity and cycling (Christensen, 1995).  It 210 

also characterises the amount of activity that the system organisation can generate for each 211 

unit of input into the system, and is therefore similar to the multiplier effect in economics 212 

(Samuelson, 1951). 213 

2.6. ENA: control analysis 214 

Two ecological control metrics, control difference (𝐶𝐷), and system control (𝑠𝑐𝑗), were used 215 

to quantify the pair-wise and system-wide influence of functional groups (Schramski et al., 216 

2006, 2007). System control analysis characterises the relative influence of each functional 217 

group towards the movement of energy through the system and quantifies the role of each 218 

component. 𝐶𝐷 enables system-based comparisons of fractional transfer (𝑐𝑑𝑖𝑗: e.g. the 219 

contribution from node 𝑖 to 𝑗 vs 𝑗 to 𝑖) to quantify pairwise dependencies (Schramski et al., 220 

2007, Schramski et al., 2006). The direction of control is denoted by + or −. Estimates of 221 

𝐶𝐷 are comparable across the entire matrix facilitating comparisons between the strengths 222 

of pairwise controls. 𝑐𝑑𝑖𝑗 values are additive and were summed to provide system wide 223 

control measures for each functional group. If 𝑠𝑐𝑗 is positive for a specific group (𝑗) this 224 

denotes that the group has a controlling influence over the system. Inversely, a negative 225 

𝑠𝑐𝑗 denotes that the group is controlled by the system. When summed, the positive and 226 

negative values of  𝑐𝑑𝑖𝑗 and 𝑠𝑐𝑗 are equal to zero, indicating total system balance 227 

(Schramski et al., 2007, Schramski et al., 2006). We used the enaR enaControl function to 228 

execute this analysis.   229 

2.7. Comparing network indicators with regional Ecopath models 230 
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Existing Ecopath models of the Irish Sea (Lees and Mackinson, 2007), West Scotland shelf  231 

(Serpetti et al., 2017) and West Scotland deep sea (Heymans et al., 2010), North Sea 232 

(Mackinson and Daskalov, 2008) and Celtic Sea (Moullec et al., 2017) were transformed 233 

into network objects using the methodology described above. TST, APL, FCI and IFI 234 

indicators were derived from each model for comparison against the indicator ranges 235 

calculated for the Irish Sea with and without data-derived uncertainty included. Because 236 

estimates of TST are strongly dictated by the structure and size of the network (Ulanowicz, 237 

2012), TST is not directly comparable across models unless they are similar in design, 238 

however, TST is useful for comparing model structures. 239 

3. Results 240 

3.1. ENA indicators 241 

The ten thousand plausible model parameterisations were used to produce distributions of 242 

ENA metrics (Hines et al., 2018) based on the diet uncertainty data (Figure 4). The original 243 

Ecopath estimates for ENA indicators were as follows: TST = 3,553 t/km2/yr, APL = 1.94, 244 

FCI = 0.03, IFI = 0.19. According to uncertainty-based inter-quartile estimates, TST in the 245 

Irish Sea network ranged from 3,893 to 4,462 t/km2/yr, APL ranged from 1.93 to 2.06, FCI 246 

ranged from 0.028 to 0.034, and IFI ranged from 0.18 to 0.21. When comparing the same 247 

indicators from other models to the range identified for the Irish Sea model (Figure 5), it 248 

was found that three of the four indicators for the Lees and Mackinson (2007) Irish Sea 249 

model (APL, FCI, IFI) fell within the range identified for the Irish Sea model presented in 250 

this work. Both models for the West Scotland have two indicators within the Irish Sea range 251 

(west coast: TST, APL; deep sea: APL, IFI) whereas all indicators for the North and Celtic 252 

Sea models fell outside of the Irish Sea range. 253 
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Figure 4. Probability density plots showing original estimates and distributions of (a) TST, (b) APL, (c) FCI and 

(d) IFI in the Irish Sea Ecopath network using data guided uncertainty. 

 254 

 

Figure 5. ENA indicators from Ecopath models of the Irish Sea (IRS (Bentley et al., 2018), IRSO (Lees and 

Mackinson, 2007)), west coast of Scotland (WCS (Serpetti et al., 2017)), west Scotland deep sea (WSDS 

(Heymans et al., 2010)), North Sea (NS (Mackinson and Daskalov, 2008)), and Celtic Sea (CS (Moullec et 

al., 2017)). Estimates are compared to the plausible distribution of ENA metric for the IRS presented in this 

paper.  
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3.2. Control difference 255 

ENA control analysis compared the flow between pairwise functional group relationships in 256 

the original Ecopath model (Figure 6) and across the ten thousand plausible 257 

parameterisations (Figure 7). By examining control difference (𝐶𝐷) we built an 258 

understanding of the transactional nature through which energy moves through the Irish 259 

Sea food web. 𝐶𝐷 measures are absolute values and therefore we can compare the 260 

strength of pairwise relationships across the matrix. The 𝐶𝐷 matrix was antisymmetric, 261 

meaning relationships can be considered from the perspective of the donor or recipient 262 

component. The twenty strongest control relationships in the original Ecopath model have 263 

been denoted in Figure 6. The three highest magnitudes of control were exerted by (1) 264 

anadromous fish as prey for seals, (2) discards as prey for Nephrops (Norway lobster) and  265 

 (3) juvenile haddock as prey for adult cod. 𝐶𝐷 matrices were generated for all plausible 266 

network parameterisations. The plausible ranges of 𝐶𝐷 values were used to quantify 267 

whether relationships were positive (plausible range of 95% confidence intervals > 0), 268 

negative (plausible range of 95% confidence intervals < 0) or undefined. 𝐶𝐷 relationships 269 

were undefined if the 95% confidence intervals of plausible 𝐶𝐷 values included zero. Out 270 

of 819 𝐶𝐷 relationships, 563 (69.7%) were negative, 70 (8.5%) were positive and 186 271 

(23.7%) were undefined (Figure 7).    272 
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 273 

 

Figure 6. Control difference (CD) matrix for the Ecopath model of the Irish Sea. The twenty strongest CD 

values are denoted with a star (*). Nodes are ordered by Ecopath functional group order.  
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3.3. System control 274 

System control (𝑆𝐶) estimates for the original Ecopath network were calculated as the row 275 

sums of the 𝐶𝐷 matrix in Figure 6. The 95% confidence intervals for 𝑆𝐶 estimates were 276 

calculated using the ten thousand plausible 𝐶𝐷 matrices. The system control of each 277 

functional group (Figure 8) can be defined as positive (> zero), negative (< zero) or 278 

undefined (95% confidence intervals include zero).  279 

 

Figure 7. Control difference (CD) roles for pairwise relationships in the Irish Sea based on ten thousand 

plausible flow parameterisations. Roles reflect the 95% confidence intervals (CI) of plausible CD 

relationships. Positive = 95% CI > 0 (row controls column). Negative: 95% CI< 0 (column controls row). 

Undefined: 95% CI include 0.  
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Marine mammals, seabirds, sharks, rays, juvenile and adult Atlantic cod and adult 280 

European plaice only have plausible 𝑆𝐶 values below zero, indicating that these functional 281 

groups are controlled by other components in the network. The majority of mid-to-low 282 

trophic groups have 𝑆𝐶 ranges above zero, indicating that they control other components. 283 

Five functional groups have 95% confidence intervals of plausible 𝑆𝐶 values that include 284 

zero (Figure 8) and therefore we are unable to conclude that these groups had control 285 

values different from zero. 286 

4. Discussion 287 

There are increasing calls for the use of ecosystem flow models and ENA to be used to 288 

inform decision making due to the ability of these tools to elucidate and quantify complex 289 

interactions in ecosystems (Leslie and McLeod, 2007, Levin et al., 2009, Collie et al., 2016). 290 

However the application of these tools in marine management has so far been limited 291 

 

Figure 8. SC vector for the Ecopath model of the Irish Sea. Error bars show the 95% distribution of system 

control values for the 10,000 plausible models produced by the uncertainty analysis.  
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(Fulton et al., 2011). These models are complex and incorporate many poorly constrained 292 

parameters, which feed into largely unknown uncertainties in their predictions. These 293 

uncertainties may be sufficiently large as to render the outputs misleading, especially when 294 

such models are projected more than a short time into the future. One of the key 295 

uncertainties in marine food web models are the diets of the functional groups and whether 296 

these have changed over time. Long-term and open source data-sets, such as DAPSTOM, 297 

are therefore invaluable for the future uptake of ecosystem models as they allow users to 298 

constrain parameters and investigate plausible model outcomes in reference to observed 299 

data uncertainties. In comparison to results derived from the application of uniform 300 

uncertainty, data-guided uncertainty improves the interpretation of model results, which is 301 

crucial for management (de la Vega et al., 2018).  302 

Here, we discuss the impact of data-derived parameter uncertainty from the Irish Sea on 303 

ENA results and highlight how this approach is essential for appropriate interpretation of 304 

ecosystem structure and function. 305 

4.1. ENA indicators 306 

This study is the first to use the uncertainty approach described by Hines et al. (2018) to 307 

estimate the confidence in Ecopath-derived ENA indicators. This is an important step in the 308 

progressive development of ecosystem flow modelling and ENA, as it enables researchers 309 

to have more confidence in the results and to draw stronger ecological inferences (Ludovisi 310 

and Scharler, 2017).  Providing estimates of uncertainty to end-users will help them to 311 

understand the accuracy/uncertainty of any estimate, which is important because 312 

management of human activities requires a solid foundation to support decisions which may 313 

result in large economic consequences (Borja et al., 2016).  314 

ENA indicators are sensitive to both the estimated flows (parameterisation) and the network 315 

structure or topology. Thus, differences in indicators derived from different models can 316 

reflect differences in network structure. The challenge is that the differences in topology 317 

can represent real system differences (e.g., an ecosystem before and after the introduction 318 



 

 19 

of an invasive species that requires a new node and related flows), or it can capture different 319 

conceptual modelling assumptions (e.g., degree of species aggregations). It is difficult to 320 

separate these effects, which is why ENA scientists often refrain comparing models with 321 

different structures (Baird et al., 1991). ENA can however be used to compare models with 322 

consistent structures. This approach has been used to investigate temporal dynamics 323 

across multiple steady state networks of the same system (Borrett et al., 2006), to measure 324 

the sensitivity of system indicators to the construction of artificial structures (Raoux et al., 325 

2018) and to compare ecological network analysis indicators for management (de la Vega 326 

et al., 2018). 327 

Models which were more complex (i.e. more nodes and a greater link density) than the Irish 328 

Sea model, such as the Celtic Sea (Moullec et al., 2017) & North Sea (Mackinson and 329 

Daskalov, 2008) models, have higher estimations of ENA indicators. The structure of the 330 

west coast of Scotland (WCS) model (Serpetti et al., 2017) is more similar to the Irish Sea 331 

model. Both include 41 functional groups, a well-defined fish component with ontogenetic 332 

splits for commercially important species, and less finely resolved mammal, bird and 333 

invertebrate components. This similarity in network complexity and functional grouping is 334 

reflected in the overlapping estimates of TST, therefore differences between these models 335 

may reveal ecological, rather than modelling structure, differences. Differences between 336 

the Irish Sea and WCS indices imply that the WCS experiences a higher degree of recycling 337 

(FCI) and indirect energy transfer (IFI), suggesting a greater system stability and diversity. 338 

However, these conclusions are weakened by the absence of diet data-based uncertainty 339 

analysis for the WCS. 340 

4.2. Pairwise and system control 341 

EBM requires decision makers to holistically consider the linkages between species when 342 

making management decisions (Pikitch et al., 2004). By applying ENA control analysis to 343 

an Ecopath model of the Irish Sea we provide a relative measure of the importance of 344 

pairwise and system wide interactions (Schramski, 2006). Understanding the roles of 345 
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functional groups and the magnitude of dependence they have on one another can provide 346 

a useful means to prioritise ecosystem components when informing management. For 347 

example, the 𝐶𝐷 analysis highlights the importance of discards as a controlling group over 348 

Nephrops, crabs and lobsters, and seabirds in all network parameterisations. With the 349 

recent introduction of the EU landings obligation (EC, 2013) our results suggest that these 350 

groups may experience drastic alterations to energy availability if discards are removed. 351 

This in-turn will propagate across the 𝐶𝐷 matrix and impact secondary (e.g. Nephrops as 352 

prey for adult haddock) and tertiary groups (e.g. adult haddock as prey for adult cod). This 353 

is an important example of how the approach used in this study can inform real-world EBM 354 

decisions. The present results also reinforce findings from other studies regarding potential 355 

un-intended consequences of implementing the landings obligation including potential 356 

reduced system stability (Fondo et al., 2015), trophic cascades (Heath et al., 2014) and 357 

changes in fisheries revenue (Celić et al., 2018). However, the landings obligation is also 358 

expected to improve current fishing methods and practices through the development of 359 

more selective gear, therefore reducing the impact of fishing on non-target species (de Vos 360 

et al., 2016). 361 

The majority of pairwise interactions, including the strongest interactions, support donor-362 

oriented control, with higher trophic levels being controlled by lower trophic levels. Fath 363 

(2004) noted that energy flow tends to be biased toward donor-oriented control. The largest 364 

𝐶𝐷 estimates (furthest from 0) correspond to flow relationships which are heavily one-sided, 365 

for example, consumption of anadromous fish by seals. Consumption of anadromous fish 366 

by other groups in the Irish Sea is very low based on available stomach records. Therefore, 367 

even though anadromous fish only account for 1% of seal diet, this equates to over 60% of 368 

the anadromous fish consumed within the foodweb. As seals are top predators this is a 369 

one-sided transition, therefore the control of anadromous fish over seals is particularly high, 370 

which also results in a high system control estimation for anadromous fish. 371 



 

 21 

System control analysis characterises the relative influence of each functional group 372 

towards the movement of energy through the system and quantifies the role of each 373 

component (Schramski, 2006, Schramski et al., 2006). All but five functional groups showed 374 

defined control (positive or negative) in the Irish Sea network (Figure 8). Generally, the 375 

levels of control indicated by the metrics were consistent with their perceived roles in the 376 

food web. For example, marine mammals, seabirds, elasmobranchs, monkfish, adult and 377 

juvenile cod, adult plaice and whiting were controlled by other system components in the 378 

Irish Sea. These controls are likely to be prey abundance for higher trophic level predators 379 

but could also include predator abundance for functional groups such as juvenile cod. The 380 

metrics suggest that mid-trophic species such as sandeels, herring, sprat and the pelagic, 381 

demersal and benthopelagic fish groups play central roles in controlling the movement of 382 

energy through the Irish Sea food web. This is consistent with expectations because these 383 

mid-trophic species link top predators with secondary and primary producers. 384 

Overall the 𝑆𝐶 analysis indicates bottom-up ecosystem regulation in the Irish Sea 385 

(Frederiksen et al., 2006), suggesting that changes in plankton communities, such as those 386 

driven by multidecadal oscillations (Fromentin and Planque, 1996, Edwards et al., 2013a) 387 

or climate change (Richardson and Schoeman, 2004, Edwards et al., 2013b), may have a 388 

strong influence on the dynamics of higher trophic levels. This finding may influence 389 

management decisions in relation to climate change or commercial stock recovery plans 390 

(Kelly et al., 2006). Ecosystems that have experienced intense exploitation, such as the 391 

Irish Sea, are likely to evolve towards bottom-up control due to the decrease in higher 392 

trophic levels (Perry et al., 2010). The removal of higher trophic levels reverses the direction 393 

of control and amplifies the already existing bottom-up control. Exploited ecosystems with 394 

bottom-up control, such as the Irish Sea, can therefore be more vulnerable to climate 395 

forcing. 396 

4.3. Towards applications of ENA in management and decision making 397 
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OSPAR, the EU and others have recognised that indicators are required for the assessment 398 

of overall marine ecosystem health (Piroddi et al., 2015, Niquil et al., 2014). Continuing 399 

efforts need to focus on the development of operational routes to transfer information 400 

derived from ENA indicators into sustainable marine management and environmental 401 

assessments (Rossberg et al., 2017). Using ecosystem flow models, it may be possible to 402 

identify ENA reference points from ecologically, economic and socially preferable time 403 

points or scenarios (Fiksel, 2006, Fiksel et al., 2014), as has been demonstrated as part of 404 

the Indiseas project (see website at www.indiseas.org) (Coll et al., 2016, Reed et al., 2016, 405 

Shin et al., 2018). However, these indicators need to be strengthened by the inclusion of 406 

uncertainty analysis before being used as targets for management and policy.  407 

There are a number of limitations to the techniques for incorporating uncertainty into models 408 

which were used in this study (Hines et al. (2018). One of the main limitations is that these 409 

approaches are data intensive and therefore may have limited application based on data 410 

availability. Whilst it is possible to run the analyses described here using uniform uncertainty 411 

levels (de la Vega et al., 2018), data guided uncertainty is preferable to develop a more 412 

informed insight into the model results. Secondly, these methods use discrete time (single 413 

time steps) and are not dynamic. Therefore their application can only provide end-users 414 

with snapshot of the distribution of ENA metrics. It is however possible to use these 415 

methods in conjunction with other models/empirical approaches to provide decision makers 416 

with as much information as possible. For example, the analyses described here could be 417 

applied to multiple static networks extracted from EwEs temporal (Ecosim) and spatial 418 

(Ecospace) modules in order to build a dynamic understanding of ENA and uncertainty over 419 

time and space (Christian and Thomas, 2003, Borrett et al., 2006). In addition, temporal 420 

ENA indicators can be extracted from EwE using the Ecosim Network Analysis plugin, 421 

therefore future work should aim to integrate this output with the uncertainty analysis 422 

presented here. 423 

file:///C:/Users/Jacob/Downloads/Untitled_message%20(8)/www.indiseas.org
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Ongoing work should aim to relate environmental and human pressures to system ENA 424 

responses to better understand how they impact ecosystem  health and function (Torres et 425 

al., 2017). Furthermore, an approach should be developed to facilitate the comparison of 426 

ENA indicators across ecosystems by accounting for structural uncertainty or differences 427 

in network configuration.  428 

In conclusion, this study has demonstrated an approach to incorporating data-driven 429 

uncertainty into foodweb modelling as a means to strengthen our confidence in the model 430 

outputs. These methods are an important step in the maturation of ecosystem modelling 431 

and in particular the development of ENA as a tool for providing advice for sustainable 432 

ecosystem management.  433 
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