Pan-Arctic diel vertical migration during the polar night
Hobbs, Laura; Cottier, Finlo; Last, Kim; Berge, Jorgen

Published in:
Marine Ecology-Progress Series
Publication date:
2018

The re-use license for this item is:
CC BY

The Document Version you have downloaded here is:
Peer reviewed version

The final published version is available direct from the publisher website at:
10.3354/meps12753

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 09. Mar. 2021
Pan-Arctic diel vertical migration during the polar night

Hobbs, L.J*1,2, Cottier, F.R1,3, Last, K.S1, Berge, J3,4,5.

1. Scottish Association for Marine Science, Oban, Argyll. PA37 1QA.
2. Department of Mathematics and Statistics, University of Strathclyde, Glasgow. G1 1XH.
3. Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
5. Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and Technology, Trondheim, Norway.

*Corresponding author. laura.hobbs@sams.ac.uk

Abstract

Diel Vertical Migration (DVM) has generally been assumed to cease during the polar night in the high Arctic, although recent studies show the occurrence of Lunar Vertical Migrations (LVMs) and shallow DVMs. Here we quantify when and where full-depth (>20m), solar mediated DVM exists on a pan-Arctic scale. We observe the scattering population, most likely to be comprised of zooplankton, using 300 kHz Acoustic Doppler Current Profilers (ADCPs). We quantify the presence/absence of DVM, and find that DVM continues throughout the year to at least 20 m at all locations south of 74° N. North of 77° N, DVM ceases for a period of time during the polar night. The dates of this cessation accurately align with the date of the winter solstice (± 2 days). Between 74 and 77° N, DVM presence/absence is variable. Acoustic data sampled at 89° N, however, show no evidence of DVM at any time during the year, a new observation. Using indicators of presence/absence of sea ice from ADCPs and satellite derived sea ice concentration data, we reveal that local variations in sea ice cover directly determine the continuation or cessation of DVM during the polar night. Earlier forming and higher concentration sea ice causes a cessation in DVM, whereas low concentration or late forming sea ice results in continuous DVM when compared to similar latitudes.

Key words: Arctic; diel vertical migration; polar night
Introduction

Diel Vertical Migration (DVM) is an adaptive behaviour regulated by light and has previously been thought to exist worldwide (Hays 2003). For zooplankton that feed in the surface, such as those feeding on phytoplankton, there will always be a trade-off between predation risk and the necessity to feed. Importantly, as long as there is a diel cycle in solar illumination, this trade-off will shift between day and night, with an increased risk of predation during daytime. Consequently, with varying solar illumination, there is typically an optimal time to feed in the surface (night) and an optimal time to migrate down to depth to hide from visually feeding predators (day); see Hays (2003) and Ringelberg (2010) for extensive reviews. It is generally accepted that the overall risk of visual predation is the predominant adaptive reason for DVM (Ringelberg 1999, Ringelberg & van Gool 2003), with light initiating and mediating the behaviour, and the durations of migrations linked to the duration of the daily photoperiod (day length). Additionally, the depth extent of DVM linearly correlates with the Secchi disk depth and therefore the vertical extent of surface illumination (Dodson 1990), whilst the time spent at the surface feeding is correlated with the length of the night (Hays 1995). DVM behaviour can vary according to changes in predator composition, abundance, and distribution (Bollens & Frost 1991, Dale & Kaartvedt 2000, Berge et al. 2014). DVM has further implications by structuring ecosystems through predator-prey interactions and by increasing the flux of carbon to depth via the biological pump (Steinberg et al. 2000, Ducklow et al. 2001, Darnis et al. 2017).

At high latitudes, the extreme seasonal variation in solar altitude results in the polar night – a time during which the sun remains at or below the horizon throughout the entire 24-hour diel cycle. However, the polar night in the Arctic is not homogenous in its intensity (Berge et al. 2015), and becomes longer and darker with increasing latitude. The most extreme diel cycle is found at the geographic North Pole (90° N) where there is just one sunrise and one sunset each year. The latitudinal increase in the extent of darkness is the result of the latitudinal variation in amplitude of the daily solar altitude cycle, which decreases linearly from 60° at 60° N, to 0° at 90° N (but remains constant at any given latitude throughout the year). Additionally, sea ice and snow cover modify the light environment, particularly through shading, which alters zooplankton vertical distribution and behaviours (Wallace et al. 2010). Although sea ice thickness and duration of presence generally increases at higher latitudes, local oceanic and meteorological conditions result in considerable spatial variation in the timing and thickness of sea ice cover even within the same latitudinal range, with large variation at small spatial and temporal scales. Solar irradiance and sea ice variation therefore contribute to a highly variable underwater light environment in the Arctic, which is anticipated to affect migration
Our understanding of DVM is challenged in high latitude environments experiencing the polar night, as DVM is a light-driven behaviour. Indeed it was previously assumed that DVM would cease entirely at high latitudes (Berge et al. 2009). Berge et al. (2009) found the first evidence of synchronised vertical migrations persisting throughout the polar night in Kongsfjorden, Svalbard (79° N), and this has since been confirmed on a pan-Arctic scale (Last et al. 2016). However, most of these migratory behaviours occur only for relatively short periods of time (order of several days), such as Lunar Vertical Migrations (LVMs) during the full moon (Last et al. 2016), or are migrations with limited vertical amplitude that occur in the shallowest depth layers (< 20 m) (Ludvigsen et al. 2018). These behaviours therefore have reduced consequences for wider ecosystem interactions or transport of carbon to depth. Much of the ecological polar night research has focused on migrators responses to light cues other than the sun, including bioluminescence (Berge et al. 2012, Cronin et al. 2016) and the moon (Berge et al. 2009, Webster et al. 2015, Last et al. 2016).

Detection of DVM is commonly undertaken using bioacoustical methods (Brierley 2014). However, acoustic data sampled using ADCPs can only be used to detect migrations on a population level, when synchronised movements are recorded as migrating sound scattering layer(s). During the period of midnight sun, when the sun remains above the horizon for periods of duration longer than 24 hours, unsynchronised migrations occur where zooplankton migrate on an individual basis rather than being controlled by a uniform underlying cue (Cottier et al. 2006, Wallace et al. 2010). Whilst unsynchronised behaviours might occur during the polar night, this study focuses on the synchronised DVM behaviour that occurs on a population level, “classic DVM” as defined by Cottier et al. (2006), and that can be detected and quantified using data sampled with ADCPs.

Whilst the existence of synchronised DVM in autumn, spring, and early/late winter is well described in the Arctic (Cottier et al. 2006, Benoit et al. 2010, Wallace et al. 2010, Berge et al. 2014), the LVM behaviours of mid-winter have been detected on a pan-Arctic scale (Last et al. 2016), and small scale vertical migrations have been observed in the mid-winter in the surface layers (Ludvigsen et al. 2018), the factors that determine transition between these differing states are not well understood or quantified. The shift from solar to lunar-driven responses is only seen during the period of full moon in the darkest part of winter (Last et al. 2016), but the timing of this transition and any dependence on latitude has not been investigated. This paper intends to quantify the cessation of fully synchronised, deep (i.e. > 20 m), classic (solar-driven) DVM as the winter progresses, and its re-initiation in spring. Our focus is to quantify how the prevalence of DVM which has an impact on further predator prey...
interactions (Hays 2003) and which plays a part in the flux of carbon to depth (Steinberg et al. 2000, 2002, Takahashi et al. 2009) varies across the Arctic Ocean during the Polar Night.

Methods

Acoustics

The dataset used here and referred to as the panArchive from this point forward, is a collection of data sampled from moored 300-kHz Teledyne RD Instruments ADCPs from 58 deployments across the Arctic Ocean (Figure 1). ADCPs were deployed in an upward looking configuration. The moored depth of the ADCPs varied from 55 to 311 m, with the ADCPs having a nominal acoustic range of 120 m. Data were averaged into either 4 m or 8 m depth bins, and the value of bin depth represents the centre of each bin (i.e. the 20 m bin covers the region 18 – 22 m when using 4 m sampling resolution). The time resolution of sampling was between 5 and 60 minutes. These 300 kHz instruments are most likely to represent mesozooplankton size scatterers (>= 5 mm). Large signals might be received from any fish entering the acoustic beam, but these are rejected by the ADCPs using an internal data filtering process (RDI, 1996). All deployments covered at least one full polar night period (defined as the middle of October to middle of March). The shallowest sections of data (between 6 and 20 meters) were discarded due to side-lobe interference of the acoustic beams at the surface boundary. The shallowest depth with available data across all datasets was 20 m. ADCP data were processed to backscatter (S_v, dB re 1 m$^{-1}$) using methods applied in Hobbs (2016), Last et al. (2016), Geoffroy et al. (2016), and many others, using the sound equation of Deines (1999).

Presentation and analysis of backscatter data

Actograms (Figure 2) are a means of visualizing daily variations in backscatter at prescribed depths to show the progression of diel behaviours over long periods of time (of order months). They were created (process fully described in Last et al. (2016)) by stacking 24 hour periods of backscatter data from a single depth bin (20 m in these examples) vertically to form a matrix that is 24 hours wide in the x-axis, and six months long in the y-axis. The data were then “double plotted” in the x-axis, so that two sets of the same 24 hours of data are shown in horizontal succession. Strong DVM can be seen in the actograms in Figures 2a and 2b, particularly in autumn and spring (top and bottom of figures respectively) – characterized by low backscatter in the hours around midday and high backscatter in the hours around midnight. Such a strong acoustic response is caused by vertical migration – populations migrating at the same time and forming a dense sound scattering layer of high backscatter. The “V” shapes that are formed in the actograms in Figure 2a and 2b are indicative of a response in

DVM during the polar night
the DVM behaviour with changing photoperiod, with migrators spending less time each day avoiding the surface as autumn progresses into winter, and more time each day avoiding the surface as winter progresses into spring.

In Figure 2a, the duration of time spent migrating down each day reduces during late autumn, but the DVM is continuous throughout the year. In Figure 2b, there is a gap between the apices of the “V” shapes – interpreted as a period of cessation of “classic” DVM during the polar night at 20 m. Figure 2c is an example where there is no evidence of DVM at any time of the year. The three actograms shown in Figure 2, using examples from a range of latitudes (71° N, 78° N, 89° N), are illustrative of the three types of seasonal DVM behaviour that exist in data from the panArchive: Figure 2a shows DVM that continues all year round (“continuous DVM”); Figure 2b shows DVM that ceases for a period during the polar night (“seasonally ceasing DVM”); and Figure 2c shows no DVM occurring at all (“no DVM”), all plotted using data sampled at 20 m.

Actograms were plotted at the pre-selected depths of 20, 40, and 60 m (not all actograms shown). The data bins closest to these were used for plotting three actograms for each of the 58 datasets in the panArchive where available. Two factors affected the exact bin depth used: 1) the sampling resolution: each bin depth reflects the centre of a bin either 4 m or 8 m in depth, and 2) the installation depth of the ADCP, such that bin depths did not necessarily fall exactly at 20, 40, or 60 m. Only datasets with bin centres at the required depth (±4 m) and which covered the period of the polar night (roughly October – March) were used (n = 50). Each actogram was classified into one of the three groups described above (“continuous DVM”, “seasonally ceasing DVM” or “no DVM”).

Definition of DVM cessation period

Actograms that were classed as showing seasonally ceasing DVM (exemplified in Figure 2b) were further analyzed to determine the timing and duration of the gap that appeared between the “V” apices – i.e. where synchronised, classic DVM ceased at depths greater than 20 m – defined now on as the “DVM cessation period”.

Straight lines were eye-fitted following the method of Tosini (2007) (examples of implementation can be seen in Chabot et al. (2012); Oliver et al. (2012)) along the edge of synchronised activity in both autumn and spring, as illustrated in Figure 2b. The points at which these lines intersect were defined as DVM\textsubscript{stop} and DVM\textsubscript{start} in autumn and spring respectively. Last et al. (2016) found that a monthly lunar migration response can sometimes “mask” the end of classical DVM. By drawing these lines that define overt DVM activity, the masking of DVM by lunar responses (an example of which can be

DVM during the polar night
seen in Figure 2b close to 24-November) will not affect the date of \(DVM_{\text{stop}}\).

Definition of sea ice cover

The presence/absence of sea ice cover (and resulting number of sea ice days) at each ADCP mooring was determined using the ADCP data, following Hyatt et al. (2008), as applied by Wallace et al. (2010). Briefly, the horizontal velocity from four ADCP beams is plotted against time and the region during which the variance in horizontal velocity is minimised is selected as a period of sea ice cover. Whilst this method cannot be used to calculate sea ice thickness, or any other properties of the ice itself (e.g. snow cover), it is appropriate for determining the presence/absence of sea ice cover. The significant advantages of this method are that it provides a reliable measure of sea ice presence at the exact location of each mooring, is exactly comparable between ADCP datasets, and provides information where satellite data is not available (i.e. at the 89° N mooring stations).

In addition to the data on sea ice coverage collected using ADCPs, sea ice concentration data (from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, (Cavalieri et al. 1996)) were used for three case study mooring locations (highlighted by green circles in Figure 1), each having been sampled for two years. Sea ice concentration (0 – 100 %) data were plotted at three-day resolution for the period of 01-October to 01-February for each year of ADCP sampling, and the average sea ice concentration at each mooring location (74.64 °N 168.8 °W, 75.1 °N 168.0 °W, and 76.3 °N 70.1 °W) was recorded.

Results

DVM cessation in winter

The cessation of DVM during winter in depths > 20 m was seen to be primarily a function of latitude (Figure 3). South of 77° N, DVM was mostly continuous during the polar night (with two exceptions, discussed below). Between 77° N and 81° N, DVM ceased for a period during the middle of the polar night. No data is available from the latitude range spanning 81° N to 89° N. At stations close to the North Pole (89° N), there was no evidence of DVM at any time of the year. A summary of these latitudinal classifications is shown in Figure 3a, along with a conceptual summary of the findings (Figure 3b).

Between latitudes 74° N and 77° N, we identified a transition zone in which the cessation in DVM was not defined clearly by latitude alone: the classification of DVM responses show variation compared to the general latitudinal trend. These six datasets (highlighted by the bottom shaded band) form a case

DVM during the polar night
study into the effect of sea ice on DVM, using the satellite derived sea ice concentration data.

Sea ice case study

Localized sea ice conditions were seen to affect migrations (Figure 4). DVM was continuous at 20 m at both mooring stations A and C in both years. At mooring station B, DVM ceased for 17 and 9 days in each year. Sea ice concentration varied between the six datasets, with the earliest and highest concentrations of ice forming at station B in 2005-06 (full concentration ice formed on 03-November). At station B in 2006-07, full concentration ice formed more than a month later (09-December), but with some broken ice (> 45% concentration) present from the start of October. Mooring station A in 2006-07 had full concentration ice forming on 31-October, but once formed varied more in its concentration which did not remain continuously at 100% until 09-December. Mooring station A in 2007-08 had the latest first occurrence of any ice (16-November), and ice remained patchy until reaching 100% concentration on 17-December. At mooring station C, relatively few full concentration ice-covered days were recorded (and satellite derived data show that sea ice concentration in the area of the mooring station were generally <100%, with mean concentrations of 65% and 41% in each of the years). In the time leading up to 21-December (the winter solstice, most likely time for any DVM cessation to occur) neither year had experienced a full cover of sea ice (100% concentration).

North Pole case study

At the mooring stations positioned close to the geographic North Pole (89 °N), DVM was not observed at any time of the year (Figure 3). No diel cycle was observed during the autumn equinox (the time of the strongest day/night light cycle), with backscatter variations between midnight and midday being 0.23 dB, in contrast with observations from data sampled at a station at 81° N during the same period which had backscatter variations of ~10 dB (Figure 5). Midnight-midday backscatter differences across the whole year were on average 0.0034 (± 0.0287, 95% CI) dB when averaged for all seven years.

DVM cessation as a function of depth

Datasets in which the backscatter data showed a cessation of DVM in winter (grey dots in Figure 3) were used to investigate the relationship between depth and the duration of a DVM cessation period (Figure 6). Grey bars show the mean date of DVM_stop and DVM_start, with one standard error indicated by black lines. Synchronised DVM ends on 11-December (± 3.45 days, 95% CI), 05-December (± 2.56 days, 95% CI), and 03-December (±3.08 days, 95% CI) at 20, 40, and 60 m respectively. At the
same depths, DVM starts on 06-January (± 3.33 days, 95% CI), 10-January (± 3.09 days, 95% CI), and 12-January (± 3.77 days, 95% CI). Synchronised DVM ends earlier and starts later with increasing depth, therefore increasing the duration of the DVM cessation period. DVM ceases for a mean period of 27, 36, and 40 days at 20, 40 and 60 m respectively. The rate of change in cessation period with depth is 2 days m$^{-1}$ for DVM_{stop} and 1.5 days m$^{-1}$ in DVM_{start}. To investigate the strength of the relationship between DVM cessation and the annual light cycle, the midpoint of these two dates was calculated for each depth. The mean date across all the datasets were 23-December, 22-December, and 22-December at 20, 40, and 60 m respectively.

Discussion

We have presented a pan-Arctic assessment of the occurrence and cessation of solar-mediated, synchronised DVM. Fully synchronised DVM in the Arctic ceases for a period in mid-winter at latitudes between 77° N and 81° N, or at least becomes shallower than 20 m. South of 77° N, DVM continues throughout the winter due to a continuously perceptible solar irradiance cycle, except during times of high sea ice concentration or early formation of ice when DVM ceases. At 89° N, no DVM is observed due to a lack of a diel solar cycle at this extremely high latitude. Sea ice concentration is a primary factor on limiting DVM throughout the winter and its occurrence results in a DVM “transition zone” at latitudes between 74° N and 77° N. Shading by sea ice presumably reduces DVM in both the depth and duration for which it exists, and this is likely to change in a warming Arctic Ocean via changes in shading and turbidity.

Overall light availability decreases with water depth due to attenuation by seawater and its particulates. We show the effect of this attenuation through a variation in the duration of DVM at different depths (Figure 6), where DVM occurred for longer periods throughout the year at shallower depths. Migrating populations gradually decreased the depth of their migration during late autumn in response to the changing depth of a specific isolume as the sun inclination decreased below the horizon (Bianchi et al. 2013). During this time of no DVM in deeper water, we conclude that migrators spend the hours of daylight migrating to the maximum depth of observed DVM in the actograms, and the hours of darkness in surface waters. During the period of cessation, populations aggregate at the surface where there is no longer a threat of visual predation at any time during a 24-hour cycle. This continuous occupation of the surface water during the darkness is not possible to observe in the data used in this study (due to limitations of ADCP at the air-ocean interface), but we can observe the daytime scattering layer moving from 60 m, to 40 m, to 20 m in the actograms as the winter solstice approaches, which logically leads to it becoming shallower than 20 m during the period of DVM cessation. Nevertheless,
it is likely that small migrations (with amplitudes < 20 m) might still occur in the surface layers shallower than those sampled here (i.e. Ludvigsen et al. (2018)).

This depth-related response assumes that the scattering profile does not represent different communities at different depths. In other studies, multiple scattering layers have been observed throughout the water column (Tarling et al. 2014, Berge et al. 2014) which might provide an alternative explanation for the variation in timings of DVM_{stop} and DVM_{start} seen at different depths (i.e. there are different types of scatterers at each depth, and different groups have varying levels of light perceptibility (Cohen et al. 2015)). However, the increase in the duration of DVM cessation as a function of depth suggests a depth-varying parameter, such as light, and the consistency in the response within the panArchive data set suggests that the controlling parameter, common across the Arctic, is light rather than community composition which would not necessarily provide such a consistent response. It is worth noting, however, that DVM is not observed in all species that will be observed using the ADCPs, and even within a single species there can be variation in the DVM response between age stages of individuals, and morphological characteristics such as size and colour. Whilst light availability reduces with depth due to attenuation, it also varies spatially due to differences in water quality. Rising temperatures in the Arctic are predicted to increase river run-off (Morison et al. 2012), which will in turn increase turbidity levels. Increased particulate matter in the water will increase light scattering, absorption and therefore attenuation (Hanelt et al. 2001) and may thereby indirectly reduce the length of the time for which synchronised DVM exists, particularly in areas mostly affected by riverine input (such as the Siberian Shelf).

We have shown that the cessation of DVM in the polar night is controlled by light, with the date of the winter solstice being calculated (within an error range of two days) using only observations of migration timings. Whilst prey is also an important driver of DVM (Hays 2003), we find in this analysis that light is the primary controlling parameter, with DVM ceasing during the period of lowest light availability. During this period of cessation, other forms of weaker vertical migrations may still be taking place, e.g. in response to moonlight (Last et al. 2016); unsynchronised migrations where there is no optimal time to feed (Cottier et al. 2006); or migrations that are confined to the upper 20 m (Ludvigsen et al. 2018) that were not detected using this methodology.

The observation of no DVM at 89° N is a novel finding. In agreement with the data presented here, Hobbs (2016) found little periodicity in the data sampled at 89° N when compared to other data in the panArchive dataset (at least for periodicity in the 19 -29 hour range). Our finding is in agreement with the hypothesis that DVM is principally light controlled (Ringelberg 1999, Ringelberg & van Gool

DVM during the polar night
2003), with the sun not crossing the horizon at all for six months at a time, although LVMs still occur (Last et al. 2016). Whilst we find that DVM is observed up to 81 °N, and is not observed at 89 °N, we have no understanding of the behaviours that occur between these latitudes due to an absence of data. However, it might be expected that the lack of DVM extends for several degrees south of 89° N since even at 88 °N (which includes a total northerly geographical area of 1.57x10^5 km^2), the sun only crosses the horizon for a total of 10 days each year (although it is currently not known how many days per year of a diel solar cycle would be required to initiate DVM).

Sea ice has also been found to modify DVM, principally through the shading effect (though indirect consequences of sea ice such as the effect it has on food, turbidity, and species composition have also been seen to alter the occurrence of DVM (Wallace et al. 2010)). Continuous DVM occurred at both the lowest latitude (station A) and the highest latitude (station C), but not at the mid-latitude (station B). Station C had the lowest sea ice concentration. Patchy, thinner sea ice allows more light to penetrate the water column (Varpe et al. 2015), and this has provided enough light to entrain DVM at Station C. Even when sea ice forms at the same time of year, the sea ice has a different effect on DVM depending on how concentrated it remains once formed. This was seen in the difference between DVM occurrence at station B (2005-06) and station A (2006-07). At station B, sea ice remained at 100% concentration once formed, but fluctuated between 85 and 100% at station A. Greater ice concentration at Station B provides sufficient shading to for DVM to cease during the winter, whereas DVM continues at Station A. We also find that sea ice does not have to be at 100% concentration to contribute to DVM cessation, providing it forms early enough. At Station B (2006-07), DVM ceased for a period of nine days despite a late formation of full concentration sea ice. However, for two months prior to this, sea ice cover was consistently above 45% cover. The extensive period of shading caused by this resulted in DVM cessation. Sea ice that never reaches 100% cover is unlikely to cause a cessation in DVM. We see evidence of this at Station C, where, despite being sampled at the highest latitude of all three sea ice case study stations, DVM continues throughout winter. At locations within the “transition zone” latitudes, early ice formation or sea ice cover of high, continuous concentrations throughout the late autumn, shades the incoming sunlight which presumably does not provide a strong enough photoperiodic cycle to maintain overt DVM. Conversely, in years where sea ice forms later, is at lower concentrations, or does not form a continuous/consolidated ice pack for some time, DVM was continuous throughout the winter.

Sea ice in the Arctic is currently experiencing a decline in extent, concentration, and thickness (Serreze & Stroeve 2015). If the results presented here are representative of the Arctic Ocean as a whole, we
predict that decreasing sea ice cover will lead to increased DVM (in terms of duration and depth extent) throughout the polar night. Consequently, this might lead to greater flux of carbon to depth (Darnis et al. 2017). Although this increase might be viewed as a positive mitigation against the mostly negative ecological consequences of climate change and sea ice reduction (for example: habitat loss (Laidre et al. 2015); ocean acidification (Bates & Mathis 2009); changes in phenology (Ji et al. 2013, Ramirez et al. 2017)), it should be noted that increases in light availability might also increase the success of visual predation (Varpe et al. 2015) or alter other ecosystem interactions, meaning that direct predictions on the effects of increasing DVM are hard to quantify. The continuation or cessation of full depth, synchronous DVM has implications for the wider ecosystem through carbon flux (Darnis et al. 2017) and predator-prey interactions (Brierley 2014), and its prevalence and likelihood of change in the future is important to understand within the context of the Arctic Ocean ecosystem.

Literature Cited

Cavalieri DJ, Parkinson CL, Gloersen R, Zwally J (1996) Sea Ice Concentrations from Nimbus-7 SMMR and DMSP

DVM during the polar night

Last KS, Hobbs L, Berge J, Brierley AS, Cottier FR (2016) Moonlight drives ocean-scale mass vertical migration of

DVM during the polar night
zooplankton during the Arctic winter. Curr Biol 26:244–251
G (2018) Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and
susceptibility to light pollution under low solar irradiance. Sci Adv 4:eaa9887
freshwater pathways. Nature 481:66–70
productivity pulses shape breeding success in Arctic seabirds. Sci Rep 7:4500
Biol Rev Camb Philos Soc 74:397–423
(DVM) research. Hydrobiologia 491:85–90
R Soc A Math Phys Eng Sci 373:20140159
Steinberg DK, Carlson CA, Båtnes AS, Goldthwait SA, Madin LP, Michaels AF (2000) Zooplankton vertical migration
Oceanogr Res Pap 47:137–158
Steinberg DK, Goldthwait SA, Hansell DA (2002) Zooplankton vertical migration and the active transport of dissolved
of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific
Tarling GA, Cottier FR, Everson I (2014) Spatial patterns in the vertical structure of euphausiids in Gullmarsfjord,
Humana Press Inc, Totowa, NJ, p 577
migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on
zooplankton behavior. Limnol Oceanogr 55:831–845
of macrozooplankton and nekton during the polar night. Polar Biol 38:75–85

DVM during the polar night
Acknowledgements

The analysis for this study was carried out under two Norwegian Research Council funded projects: CircA (214271) and Arctic ABC (244319). The bulk of this paper was written during a postgraduate writing retreat funded by the Marine Alliance of Science and Technology in Scotland (MASTS). The pan-Archive dataset was created by Estelle Dumont. Dr Phil Hwang provided assistance in accessing sea ice data. Thanks to Dr Jon Cohen for his useful comments on an early draft of this manuscript. The creation of the pan-Arctic archive of ADCP data was supported by the UK Natural Environment Research Council (NERC) (Panarchive: NE/H012524/1 and SOFI: NE/F012381/1) as was mooring work in Svalbard (Oceans 2025 and Northern Sea Program). Moorings were also supported by the Research Council of Norway (NFR) projects: Circa (214271), Cleopatra (178766), Cleopatra II (216537), and Marine Night (226471). This manuscript is a contribution to the Prize research project (UK Natural Environment Research Council (NERC): NE/P006302/1) which supported F.C. and K.L. during manuscript preparation. J.B. was financially supported by the NRC and ENI Norge AS (EWMA: 195160). We wish to thank the following in no particular order for providing ADCP data for analysis: James Morrison and Roger Anderson (Polar Science Centre), who provided the data source from the North Pole Environmental Observatory, National Science Foundation (NSF) (http://psc.apl.washington.edu/northpole/Mooring.html); Knut Aagaard, who provided the North Pole ADCP data funded by NSF (OPP-9910305, OPP-0352754, and ARC-0856330); Humfrey Melling (Institute of Ocean Sciences - Fisheries and Oceans, Canada), who provided data from Chukchi Plateau, Canada Basin, and Baffin Bay, supported by the Canada Action Plan 2000 on Climate Change, the Canada Program on Energy Research and Development, the Canada National Science and Engineering Research Council, the USA NOAA Arctic Research Program, and the Canadian Coast Guard; Igor Polyakov and Vladimir Ivanov (International Arctic Research Center, University of Alaska Fairbanks), who provided data from the Nansen and Amundsen Basins Observational System (NABOS) funded by the NSF (1203473); and Bill Williams (Fisheries and Oceans Canada) and Eddy Carmack (Institute of Ocean Sciences).
Figure 1 a) Map of ADCP mooring locations (n = 58) in the panArchive. Individual moorings are indicated by coloured circles. Green circles (n = 6) indicate moorings used in the sea ice case study. A black square highlights the moorings (n = 7) used in the North Pole case study. A full description of the mooring stations and supplementary information can be found in Hobbs (2016). b + c) detailed maps of mooring stations used in the sea-ice case study (each green circle represents two years of sampling): b) mooring stations A + B; c) mooring station C.
Figure 2 Actograms at three latitudes presenting acoustic backscatter from the 18-22 m depth bin, sampled using ADCPs. Three varying seasonal patterns of DVM are shown: a) Continuous DVM (sampled at 71° N); b) Seasonal cessation of DVM (sampled at 78° N); c) No DVM (sampled at 90° N). In Figure b, lines have been drawn to illustrate the methodology of calculating dates for DVM_{stop} (solid) and DVM_{start} (dashed) using the points at which each pair of lines crosses with its corresponding line.
Figure 3 a) Classification of panArchive datasets as i) Continuous DVM (white); ii) Seasonal cessation of DVM (grey); iii) No DVM (black) using ADCP backscatter data from the closest data bin available to 20 m. Shaded bands show datasets used in two case studies: (bottom) a sea ice case study in the transition zone (three case study mooring stations, A-C, are shown, and (top) an extremely high latitude case study close to the North Pole (~89°N). b) Conceptual figure of latitudinal variation in seasonal DVM behaviours, summarising the observations in 3a.
Figure 4 Investigation into the effect of localised sea ice on the seasonal cessation of DVM using three mooring stations in the “transition zone” (as per Figure 3): A) 74.6° N 167.2° W; B) 75.1° N 166.0° W; and C) 76.3° N 70.1° W Black lines show the concentration of sea ice (from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, (Cavalieri et al. 1996)) at three-day resolution from satellite data. Shaded gray bars at the surface indicate the presence of DVM signal at
20 m depth. Continuous bars (such as at mooring stations A and C) show no cessation of DVM (represented by white dots in Figure 3), whilst the broken bars in B show a cessation of DVM for 17 and 9 days (in 2005-06 and 2006-07 respectively). Vertical dashed lines indicate significant dates in sea ice data, as referred to in the text.
Figure 5 Echograms of hourly averaged data for the seven-day period (each data point represents the average backscatter at that time across all seven days) over the autumn equinox, 21st September. Plots labelled with years are data sampled at 89° N (North Pole mooring stations, highlighted by black circle in Figure 1 and top shaded band in Figure 3a). Lower right plot is data sampled at 81° N for comparison. A clear DVM cycle (high backscatter at midnight, low at midday, ~10 dB daily variation) is seen at 81° N compared to 89° N (no observable daily variation, 0.23 dB of maximum variation between midday and midnight).
Figure 6 Mean date of DVM_{stop} and DVM_{start} across all datasets that showed seasonal cessation of DVM at all three depths ($n = 22$). Error bars indicate standard error at each depth. Vertical dashed line shows the date of winter solstice.