Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands
Lavers, Jennifer L.; Bond, Alexander L.

Published in:
Proceedings of the National Academy of Sciences of the United States of America
Publication date:
2017
Publisher rights:
©2017 The Authors, published by PNAS
The re-use license for this item is:
CC BY-NC
The Document Version you have downloaded here is:
Publisher's PDF, also known as Version of record

The final published version is available direct from the publisher website at:
10.1073/pnas.1619818114

Link to author version on UHI Research Database

Citation for published version (APA):
Lavers, J. L., & Bond, A. L. (2017). Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6052-6055. https://doi.org/10.1073/pnas.1619818114

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:
1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 05. Oct. 2020
Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands

Jennifer L. Lavers and Alexander L. Bond

In just over half a century plastic products have revolutionized human society and have infiltrated terrestrial and marine environments in every corner of the globe. The hazard plastic debris poses to biodiversity is well established, but mitigation and planning are often hampered by a lack of quantitative data on accumulation patterns. Here we document the amount of debris and rate of accumulation on Henderson Island, a remote, uninhabited island in the South Pacific. The density of debris was the highest reported anywhere in the world, up to 671.6 items/m² (mean ± SD: 239.4 ± 347.3 items/m²) on the surface of the beaches. Approximately 68% of debris (up to 4,496.9 pieces/m²) on the beach was buried <10 cm in the sediment. An estimated 37.7 million debris items weighing a total of 17.6 tons are currently present on Henderson, with up to 26.8 new items/m² accumulating daily. Rarely visited by humans, Henderson Island and other remote islands may be sinks for some of the world’s increasing volume of waste.

Henderson Island | Pitcairn Island Group | South Pacific Gyre | marine debris | plastic pollution

Since the beginning of its mass manufacture in the 1950s, the annual production of plastic has increased from 1.7 million tons in 1954 to 311 million tons in 2014 (1). Because plastic is very durable and most is not recycled (2), accidentally or intentionally littered items eventually enter our waterways. Here, plastic’s buoyancy facilitates its transport by currents and wind throughout the world’s oceans, persisting for decades and breaking into increasingly smaller pieces as a result of physical abrasion from wave action or photodegradation (3). This relatively new but permanent aspect of the marine environment is now ubiquitous in the world’s oceans, even in the most remote locations, far from metropolitan and populated areas (4, 5). The surface layer of the world’s oceans now contains more than five trillion items, mostly microplastics (<5 mm) (6). This proliferation of debris in our oceans has led to the recognition of plastic pollution as a major global environmental issue (7).

The significant quantities of plastic in the ocean, although widespread, concentrate in defined areas, such as oceanic convergence zones (8) and ocean gyres (9), reaching densities as high as 890,000 pieces/km² (6). The plastic from these gyres likely poses a significant threat to the wildlife inhabiting these waters and the islands on their periphery (e.g., through dispersal of colonizing species) (10). However, few data are available because of the remote nature of the gyres and islands and the species within them, and the fate of plastic pollution in the marine environment generally is poorly known.

An improved understanding of the abundance, diversity, and sources of plastic is required to mitigate the plastic pollution, and there are a number of recognized ways to quantify these factors (11). They include quantifying plastic directly through at-sea trawl data (12) or indirectly by studying interactions with wildlife, e.g., frequency of ingestion or entanglement (13). For example, more than 200 species are now known to be at risk from the ingestion of plastic (14, 15), with evidence that some species exhibit preferences for certain colors or types of plastic while foraging at sea (16, 17). Importantly, beach surveys provide similar and often complementary data on sources, patterns, and trends in the abundance and sources of marine plastic (18, 19).

Examining the accumulation of plastic pollution on islands, particularly remote, uninhabited islands, can provide unique insights (11, 20).

Here, we present the results of a comprehensive survey of beach plastic in a UNESCO World Heritage site, Henderson Island, in the Pitcairn Group, South Pacific Ocean. Henderson Island is uninhabited and is very remote, with no major terrestrially based industrial facilities or human habitations within 5,000 km. Because there are no significant local sources of pollution, all anthropogenic debris on the island is derived from the global disposal and dispersal of waste. Here we summarize the limited data available for remote, uninhabited islands and provide quantitative data on the accumulation of debris on Henderson Island to highlight the utility of comprehensive beach surveys as reliable proxies for the state of the world’s oceans.

Results

The density of surface debris ranged from 0.35–1.05 items/m² in the beach embayment forest (hereafter “beach-back”) and 20.5–671.6 items/m² on beaches (Table 1; also see SI Results). The density of debris buried to a depth of 10 cm within quadrats ranged from 53.1–4,496.9 pieces/m² on North and East Beaches (Table 1). The total number of visible and buried debris items estimated to be present on Henderson Island was 37,661,395 items weighing a total of 17,601 kg; the estimated mass of buried plastic was 2,445 kg.

Significance

The isolation of remote islands has, until recently, afforded protection from most human activities. However, society’s increasing desire for plastic products has resulted in plastic becoming ubiquitous in the marine environment, where it persists for decades. We provide a comprehensive analysis of the quantity and source of beach-washed plastic debris on one of the world’s remotest islands. The density of debris was the highest recorded anywhere in the world, suggesting that remote islands close to oceanic plastic accumulation zones act as important sinks for some of the waste accumulated in these areas. As global plastic production continues to increase exponentially, it will further impact the exceptional natural beauty and biodiversity for which remote islands have been recognized.

Author contributions: J.L.L. and A.L.B. designed research; J.L.L. performed research; J.L.L. and A.L.B. analyzed data; and J.L.L. and A.L.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Frequently available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: Jennifer.Lavers@utas.edu.au.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619818114/-/DCSupplemental.
debris items (1,176 kg) (Table 1) accounted for only a small proportion (0.07%) of the total, because the majority of buried items (65.5%) were <5 mm. Each day, 17–268 new items washed up on a 10-m section of North Beach, representing a daily accumulation rate of 1.7–26.8 items/m.

Materials and Methods
Study Site. Henderson Island (4,308 ha, 9°5 x 5 km; 24°20’S, 128°19’W), one of four islands belonging to the Pitcairn Group, is a remote, uninhabited island in the South Pacific Ocean. The nearest settlement is Pitcairn Island, 115 km to the west and home to ~40 residents (Fig. 1). Henderson Island is surrounded by a fringing limestone reef up to 75 m wide (21), with beaches composed of fine to coarse white sand, pebbles, shells, and coral rubble. The predominant wind and current direction is from the northeast (Fig. 1) (21). Henderson Island is located on the western boundary of the South Pacific Gyre, a known plastic-accumulation zone (Fig. 1) (22).

Sample Collection and Calculation of Accumulated Debris. Micro- (<2–5 mm) and macrodebris (>5 mm) items, including plastic, glass, wood, and metal items, were sampled along the North (2.1 km long) and East (1.9 km long) Beaches of Henderson Island from 2015 May 29–August 15. Because of the dynamic nature of the marine environment and a number of challenging island features, we used three different transect and quadrat designs aimed at providing specific types of data (Fig. 2 and SI Materials and Methods). We sampled surface beach debris along five 30-m transects and 10 20-m transects in the beach-back. Buried debris (0–10 cm) was sieved from all sediment excavated in 10 0.4 x 0.4 m quadrats. Plastic accumulation was sampled along a 10 x 0.2 m transect centered on the high tide line on North Beach for six consecutive days. To extrapolate the total amount of debris on Henderson Island, we multiplied the mean surface densities and mean buried volumetric densities by total beach area and added the debris from a highly polluted area separately (SI Materials and Methods). All debris items (>2 mm on beaches and >5 mm in the beach-back) encountered on sample transects or quadrats were counted, weighed, and sorted by type and color (see SI Materials and Methods for categories). All values are presented as mean ± SD.

Discussion
We enumerated >53,100 anthropogenic debris items within transects, resulting in a minimum estimate of 37.7 million pieces of plastic debris weighing 17.6 tons on the sandy beaches of Henderson Island in 2015 (Table 1). Although alarming, these values underestimate the true amount of debris, because items buried >10 cm below the surface and particles <2 mm (<5 mm in the beach-back area) and debris along cliff areas and rocky coastlines could not be sampled. Small items are numerically dominant among all debris, with microplastics accounting for 55% of items floating in surface waters of the South Pacific Ocean (22) and 61.6% of items recorded in beach transects on Henderson Island (Table S1). In April and November 1991, “frighteningly large” amounts of beach debris were recorded on uninhabited Ducie and Oeno Atolls, at densities of 0.12 and 0.35 pieces/m², respectively (see Table S2) (23). Twenty-five years later, the density of debris on neighboring Henderson Island is 200–2,000x higher (Fig. 3A and Table 1). Given that these islands are in the same group and experience similar oceanic conditions, their plastic densities are likely to be similar. If so, debris on Henderson Island has increased by 6.6–7.9%/y. The remote and isolated nature of Henderson Island means the standing stock of debris has not been affected by previous clean-up efforts or local land-based sources. The increase in debris on this isolated island therefore mirrors the long-term accumulation and the increased abundance of debris in our oceans (6, 11). Information on trends in the abundance of debris at sea are lacking (but see refs. 8 and 24), largely because of the currently prohibitive cost of offshore sampling, so beach-based surveys are a valuable source of information.

A range of factors influence the abundance of beach debris, including local currents, beach topography, and weather conditions, which can result in burial (11, 20). Few studies of debris on beaches have included buried material, even though it has been shown to comprise the majority of debris (~65%) (Table S3) (25, 26). We found that 68% of all debris on Henderson was buried (Table 1). Data on beach debris accumulation rates are similarly rare (Table S2). We estimated a minimum of 3,570 debris items were deposited on North Beach daily (13,316 ± 10,094 items·km⁻¹·d⁻¹), five orders of magnitude greater than the accumulation rates reported elsewhere (Table S2). The daily accumulation accounts for around a quarter of the total debris present on the beach (Table 1) and highlights the dynamic process of the deposition of new debris, movement of debris already present on the beach, burial of existing debris, and removal of debris by outgoing waves and tides (26).

Land-based sources (e.g., storm drains) represent ~80% of plastic inputs to the ocean (27). However, on oceanic islands (23, 28) and undeveloped continental beaches (29), marine-based
sources of debris (e.g., fishing boats) can be more important sources. Asian and South American sources of plastic on Henderson may reflect fishing activity in the surrounding waters (Table S4) (30, 31); fishing-related items (e.g., buoys) accounted for 7.7% of items recorded (Table S4). The high frequency of items from South America (27.3% of identifiable items) (Table S5) also may result from Henderson’s position in the South Pacific gyre (9). This current flows in an anticlockwise direction, after traveling north along the coast of South America, transporting coastal waste to the island (Fig. 1) (32). Remote islands off Chile and their adjacent waters contain high densities of beach plastic (Table S2), primarily fishing gear (33), suggesting that this pattern is widespread throughout the region.

Plastic debris on beaches creates a physical barrier, contributing to a reduction in the number of sea turtle laying attempts (Henderson Island is the only known nesting site in the Pitcairn Group) (Fig. 3A) (34, 35), lowered diversity of shoreline invertebrate communities (36), and increased hazard of entanglement for coastal-nesting seabirds (37, 38). The presence of debris on beaches therefore negatively impacts marine biodiversity, particularly on remote islands where significant volumes of debris accumulate and where prevention or mitigation is extremely challenging and costly and requires considerable time.

Conclusions
Changes in the frequency of wildlife ingestion of or entanglement in debris are often used as an indicator of pollution in the...
The floating plastic debris is estimated to be present on Henderson Island account for only 1.98 seconds’ worth of the annual global production of plastic (46). As global plastic production continues to increase exponentially (47), it will further impact the exceptional natural beauty and biodiversity for which this island and many other UNESCO World Heritage Sites have been recognized.

ACKNOWLEDGMENTS. We thank A. Donaldson, A. Forrest, L. MacKinnon, and O. OPP for their assistance in the field; J. Gibert for creating Fig. 2; T. Berlind for providing photographs and information on the 1991 Sir Peter Scott expedition to the Pitcairn Islands; the Government of the Pitcairn Islands for permission to work on Henderson; J. Hall, J. Kelly, S. O’Keefe, A. Schofield, C. Stringer, J. Vickery, and P. Warren for their vital support on the island and at the Royal Society for the Protection of Birds Headquarters; and J. Hall, J. Provencher, O. OPP, and two anonymous reviewers for comments that improved earlier drafts. The 2015 Henderson Island expedition was funded by the David and Lucile Packard Foundation, the Darwin Initiative, the Farallon Islands Foundation, British Birds, and several private donors.

Lavers and Bond

20. Barnes DKA (2005) Remote islands reveal rapid rise of southern hemisphere, sea debris estimated to be present on Henderson Island account for only 1.98 seconds’ worth of the annual global production of plastic (46). As global plastic production continues to increase exponentially (47), it will further impact the exceptional natural beauty and biodiversity for which this island and many other UNESCO World Heritage Sites have been recognized.