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Abstract26

When making predictions about ecosystems, we often have available a number of27

different ecosystem models that attempt to represent their dynamics in a detailed28

mechanistic way. Each of these can be used as a simulator of large-scale experiments29

and make projections about the fate of ecosystems under different scenarios in or-30

der to support the development of appropriate management strategies. However,31

structural differences, systematic discrepancies and uncertainties lead to different32

models giving different predictions. This is further complicated by the fact that the33

models may not be run with the same functional groups, spatial structure or time34

scale. Rather than simply trying to select a ‘best’ model, or taking some weighted35

average, it is important to exploit the strengths of each of the models, while learn-36

ing from the differences between them. To achieve this, we construct a flexible37

statistical model of the relationships between a collection of mechanistic models38
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and their biases, allowing for structural and parameter uncertainty and for differ-39

ent ways of representing reality. Using this statistical meta-model, we can combine40

prior beliefs, model estimates and direct observations using Bayesian methods, and41

make coherent predictions of future outcomes under different scenarios with robust42

measures of uncertainty. In this paper we take a diverse ensemble of existing North43

Sea ecosystem models and demonstrate the utility of our framework by applying it44

to answer the question what would have happened to demersal fish if fishing was45

to stop.46

Key-words: Bayesian statistics, Complex models, Multi-model ensemble, Multi-47

species models, Simulation models, Uncertainty analysis48

49
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1 Introduction66

Ecosystem models are widely used to support policy decisions, including fisheries67

and marine environmental policies (Hyder et al 2015). Any such model is imper-68

fect, and in order to use it to inform policy making, it is important to quantify69

the uncertainty of its predictions in a robust manner (Harwood and Stokes 2003;70

Williams and Hooten 2016). Often several models are available, each embodying71

some knowledge of a given ecosystem, but differing in their predictions. Choosing72

to use one model’s prediction whilst excluding the others is limiting the amount73

of information available and therefore increasing uncertainty. Our aim here is to74

describe and demonstrate a framework for combining information from multiple75

ecosystem models in a coherent way that, following Chandler (2013), exploits their76

strengths and discounts their weaknesses.77

Many methods of combining outputs from different models have been previously78

proposed. One is to use a ‘democracy’ of simulators (Payne et al 2015; Knutti 2010),79

where each model gets one vote, regardless of how well it represents the true system,80

and a distribution of possible outputs comes from this. Similarly, one could take81

an average of the model outputs, which often outperforms all the individual models82

(Rougier 2016). However, some models are better at predicting some outputs than83

others. An alternative approach is to try and find the ‘best’ model(s) (Payne et al84

2015; Johnson and Omland 2004). These methods imply that at least one of the85

models is ‘correct’, in the sense that it can predict the true output. Not only is86
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this a bold assumption, but the addition of another model may allow an area of the87

output space to become probable when before it was not. Thus, by increasing the88

number of models there is no guarantee that the uncertainty will reduce. One way89

of deciding which model is the ‘best’ is to weight models using Bayes factors, also90

known as Bayesian model averaging (Banner and Higgs 2017; Ianelli et al 2016).91

As Chandler (2013) explains, there is generally no model better in all respects than92

the others and so there is no natural way of assigning a single weight to each model.93

Furthermore, if model outputs are not presented with uncertainty then, in the case94

where the truth is a continuous quantity, a simulator will almost never be ‘correct’,95

thus the probability of getting the true value from the ensemble is zero. Recently,96

‘ensemble models’ have been used to describe how model outputs related to reality97

(Anderson et al 2017).98

Applying the above methods to ecosystem models is not straightforward, as99

different models have often been fitted to different data (Ianelli et al 2016), and100

often their outputs are on different scales or represent different dynamical pro-101

cesses, which are sometimes integrated out. A further difficulty in applying these102

methods is that the ecosystem models can have different outputs that are not di-103

rectly comparable. For example, whole ecosystem models often reduce complexity104

through the use of functional groups (e.g. Heath 2012) whereas partial ecosystem105

or multi-species models may focus on a reduced number of species (e.g. Blanchard106

et al 2014). However, different ecosystem models are often developed with similar107

underlying theory (e.g. food web interactions), could have similar dynamics and108

may even be developed in the same research groups (e.g. Heath (2012) and Speirs109

et al (2010)). They may also have similar forcing inputs, for example those com-110

ing from global regional physical or biogeochemical models such as those used in111

model inter-comparison studies (e.g. Tittensor et al 2017). When combining model112
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outputs, it is important to take these similarities into account rather than treating113

the models as independent (Rougier et al 2013).114

Another approach is to think of the ecosystem models as coming from a popu-115

lation of such models (Tebaldi and Sansó 2009; Chandler 2013; Leith and Chandler116

2010) and then describe how the population differs from reality. It makes sense that117

several models in an ensemble model would inform one another. For example, one118

model (m1) may contain several demersal fish species and the other (m2) a func-119

tional group called “demersal fish”. Although m2 does not explicitly contain the120

species Atlantic cod (Gadus morhua) its relationship with m1 may be able to tell121

us something about Atlantic cod indirectly. In other words, modelling the models122

allows us to sample the unobserved outputs, conditional on the models’ observed123

outputs.124

In this paper we describe an ensemble model which is based on the principles of125

Chandler (2013) but which models the outputs themselves, varying in form between126

the different ecosystem models, rather than statistical descriptors of the outputs.127

Our approach involves statistical modelling of the relationship between an ‘ensem-128

ble’ of ecosystem models. To avoid ambiguity, we will refer to the latter henceforth129

as ‘simulators’ and we refer to the way in which a simulator output differs from real-130

ity as its discrepancy. As we are interested in measuring uncertainty our statistical131

modelling will apply Bayesian inference methods (Robert 2007), and our analysis132

will consider any relevant prior knowledge as well as simulator outputs that pre-133

dict what would happen in the future under different management scenarios. The134

Bayesian approach is subjective; for an introduction to subjective uncertainty and135

decision theory, see Berger (1985). Strictly speaking, any fully Bayesian analysis136

involves obtaining the posterior beliefs of a particular individual, by combining137

their prior beliefs with information from data and modelling. Depending on the138
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context, that individual may be, for example, either a scientist or a policy maker.139

Our framework includes the elicitation of prior beliefs to combine with information140

from the model ensemble, allowing different individuals’ posterior distributions to141

be obtained. For the purpose of our case study, the individual chosen is one of the142

authors.143

In Section 2 we set up the general framework and in Section 3 we demonstrate144

the model by looking at a specific case study: what would have happened in the145

North Sea if we had stopped fishing in 2014? We conclude by discussing wider146

applications of the approach in Section 4.147

2 General framework148

We think of the available simulators as coming from some conceptual population.149

Our a priori beliefs about each one are the same; we are treating the simulators as150

unlabelled ‘black boxes’. More formally, we regard the simulators as ‘exchangeable’;151

see Gelman et al (2013). We consider relaxing this assumption in Section 4. This152

idea is formalised by using a hierarchical model (for more information see Gelman153

et al (2013)) to represent the ensemble of simulators. However, there is no reason to154

believe that the population of simulators will either contain, or be centred on, the155

truth (Chandler 2013) so we need to allow some difference between the population156

of simulators and the truth.157

To describe the relationship between the simulators and the truth we developed158

an ensemble model that describes the population of simulators, its dynamics and its159

relation with the true quantity of interest. We are interested in n true quantities,160

y(t) = (y
(t)
1 , . . . , y

(t)
n )′, e.g. the biomass of n species at a time t, for times t =161

1, . . . , T . We regardm simulators, each giving an output representing the quantities162
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of interest, x
(t)
i = (x

(t)
i1 , . . . , x

(t)
in )

′ for i = 1, . . . ,m, as coming from a population with163

expected output µ(t) = (µ
(t)
1 , . . . , µ

(t)
n )′, the simulator consensus. To define our164

ensemble model, we describe separately the difference between y(t) and µ(t), the165

shared discrepancy, and the difference between x
(t)
i and µ(t), simulator i’s individual166

discrepancy. Figure 1 illustrates an example of the ensemble model at time t. It167

can be read as a geometrical representation of how the simulators and reality relate168

to one another (see also Chandler 2013). In the subsequent subsections we describe169

the specific details of the general ensemble model. A summary of the variables and170

the model can be found in Table 1.171

2.1 Uncertainty in simulator outputs172

The outputs from simulator i, an ni dimensional vector u
(t)
i , may not always rep-173

resent the elements of x
(t)
i , its ‘best guess’, directly. For example, the elements of174

x
(t)
i may represent biomasses of individual fish species and the elements of u

(t)
i may175

represent the biomass of functional groups, e.g. biomass of demersal fish.176

We say that177

u
(t)
i = fi(x

(t)
i ),

for some simulator-specific function fi(·). For example, if the elements of u
(t)
i are178

elements of x
(t)
i or are sums of those elements, perhaps with some rescaling, then179

the relationship is linear180

u
(t)
i = Mix

(t)
i ,

where Mi is an ni × n matrix. For other examples see Table 2.181

Generally the simulators are run with uncertain inputs and parameter values.182

This leads to uncertainty in the outputs and is commonly known as parameter183
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uncertainty. We say that184

u
(t)
i = û

(t)
i + ϵui ,

for t ∈ Si, where ϵui has expectation 0 and is sampled from a simulator-specific185

distribution and û
(t)
i is the expectation of the ith simulator’s output at time t. The186

simulator-specific distribution is found from fitting the simulator to a finite dataset187

(e.g. Spence et al 2016; Thorpe et al 2015) or by performing sensitivity analysis of188

the simulator inputs (e.g. Morris et al 2014).189

2.2 Individual discrepancy190

At time t, the difference between simulator i’s ‘best guess’, x
(t)
i , and the simulator191

consensus, µ(t), is simulator i’s individual discrepancy,192

x
(t)
i − µ(t) = γi + z

(t)
i .

This divides the individual discrepancy between the long-term individual discrep-193

ancy, γi, and the short-term individual discrepancy, z
(t)
i . γi is an n dimensional194

random variable with expectation 0 and covariance C. It seems natural to allow195

z
(t)
i and z

(t+1)
i to be dependent on each other; for example, if at time t, z

(t)
i was196

less than 0, then we might also expect z
(t+1)
i to be less than 0. With this in mind,197

we say that z
(t)
i follows a stationary auto-regressive model of order 1,198

z
(t)
i = Riz

(t−1)
i + ϵz,t,i, (1)

for t > 1, where each ϵz,t,i is an independent n-dimensional random variable centred199

on 0 with covariance Λi and Ri is an n × n matrix with the constraint such that200

Ri is stable, i.e. limk→∞Rk
i = 0. Ri and Λi describe the dynamics of simulator i201

with Ri ∼ gR(·) and Λi ∼ gΛ(·) for some distributions gR and gΛ. At t = 1, z
(1)
i202

is sampled from the stationary distribution of the auto-regressive model described203

9



in equation 1 (See Appendix A for more details). This formulation means that the204

expectation of the long-run behaviour of the individual discrepancy is the long-term205

individual discrepancy, i.e.206

lim
k→∞

E(γi + z
(t+k)
i |γi + z

(t)
i ) = γi + lim

k→∞
E(z

(t+k)
i |z(t)

i )

= γi + E(z
(t)
i )

= γi.

2.3 Shared discrepancy207

The shared discrepancy, the difference between the simulator consensus, µ(t), and208

truth, y(t), is split up into the long-term shared discrepancy, δ, and the short-term209

shared discrepancy, η(t), i.e.210

y(t) − µ(t) = δ + η(t).

The short-term shared discrepancy is described by a stationary auto-regressive211

model of order 1212

η(t) = Rηη
(t−1) + ϵη,t, (2)

for t > 1, where Rη is stable and ϵη,t is an n dimensional random variable centred213

on 0 with covariance ∆. At t = 1, η(1) is sampled from the stationary distribution214

of the auto-regressive model described in equation 2 (See Appendix A for more215

details). This formulation means that the expectation of the long-run behaviour of216

the shared discrepancy is the long-term shared discrepancy, i.e.217

lim
k→∞

E(δ + η(t+k)|δ + η(t)) = δ + lim
k→∞

E(η(t+k)|η(t))

= δ + E(η(t))

= δ.
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2.4 The truth218

In the absence of any simulators, our prior beliefs for the truth at time t, y(t), follow219

a random walk,220

y(t) = y(t−1) + ϵΛ,t,

for t > 1, where each ϵΛ,t is centred on 0 with covariance Λy. At t = 1, the truth,221

y(1), follows a generic prior distribution p(y(1)).222

At times t ∈ S0, there are ny noisy and possibly indirect observations, ŵ(t), of223

the truth which come from some distribution, p(ŵ(t)|y(t)) that is problem specific224

and is caused by data uncertainty (Li and Wu 2006). The elements of ŵ(t) may225

not be the same as that of y(t), for example if observations are incomplete or226

aggregated. We assume that the sampling distribution of observations depends on227

the truth through some function fy(·), such that228

w(t) = fy(y
(t))

and p(ŵ(t)|y(t)) = p(ŵ(t)|w(t)).229

For example if w(t) is some linear transformation of y(t), then230

w(t) = Myy
(t)

where My is an ny × n matrix.231

3 Case Study232

We illustrate our model by looking at a problem where a scientist needs to formally233

summarise uncertain model results, for example to present to other scientists or to234

decision makers about what would happen to the biomass of demersal species in235

the North Sea if fishing were to stop completely in 2014. We use outputs from five236

ecosystem simulators: Ecopath with Ecosim (EwE, Lynam and Mackinson 2015),237
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mizer (Blanchard et al 2014), FishSUMs (Speirs et al 2010), StrathE2E (Heath et al238

2014) and LeMans (Thorpe et al 2015) (see Appendix B for more details about the239

simulators), as well as data from the International Bottom Trawl Survey (IBTS)240

(ICES Database of Trawl Surveys (DATRAS) 2015). In this example, one of the241

authors, JLB, has taken this role. Her prior beliefs are elicited and expressed as a242

prior distribution and the posterior distribution captures her uncertainty about the243

future of the ecosystem in this scenario give the relationships among the simulators244

and observations.245

3.1 Groups of species246

The five simulators represent demersal fish in different ways, with different species247

resolution and coverage. While our main interest is in demersal fish collectively, we248

need to represent the state of the ecosystem at a resolution that enables us to link249

these simulator outputs together.250

In representing the state of the ecosystem, it would be computationally ineffi-251

cient to treat each species separately, given that we are interested in demersal fish252

in aggregate. Instead, we can reduce the dimension of the problem by grouping253

the species together. This grouping needs to have the property that any simulator254

output that we can use can be expressed as the sum of one or more of our groups.255

The groups do not necessarily need to have any direct biological interpretation;256

provided the groups meet the criterion above, and allow us to represent the quan-257

tities of interest—here, demersal fish, given by the sum of all groups—the precise258

choice will not affect the answer obtained. For computational efficiency, we choose259

the minimum number of groups that meets this criterion while covering all dem-260

ersal species. For example we grouped together monkfish, long rough dab, lemon261

sole and witch because they all occur in exactly the same simulators, as individual262
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species in EwE and LeMans and implicitly in StrathE2E, but are not contained263

in any larger set of species for which this is true. This minimal set consists of 5264

groups, which we will model explicitly. The groups are:265

1. Common demersal : These are Atlantic cod (Gadus morhua), haddock (Melanogram-266

mus aeglefinus), whiting (Merlangius merlangus), Norway pout (Trisopterus267

esmarkii), European plaice (Pleuronectes platessa), common dab (Limanda268

limanda) and grey gurnard (Eutrigla gurnardus).269

2. Sole: This is common sole (Solea solea).270

3. Monkfish etc.: These are monkfish (Lophius piscatorius), long rough dab (Hip-271

poglossoides platessoides), lemon sole (Microstomus kitt) and witch (Glypto-272

cephalus cynoglossus).273

4. Poor Cod and Rays: These are poor cod (Trisopterus minutus), starry rays274

(Amblyraja radiata) and cuckoo rays (Leucoraja naevus).275

5. Other demersal fish: This consists of all other demersal fish.276

We consider the total biomass densities for each of these groups, in tonnes per277

square kilometre, modelled on the log scale (to base 10, for ease of interpretation).278

3.2 Data and elements of the statistical model279

The IBTS data were extracted as in Fung et al (2012), to reveal the total catch280

on the survey for each of the 5 groups for the first (1986-2013) and third quarter281

(1991-2013). How this value relates to the true biomass density in the North Sea is282

not trivial, and these values are often multiplied by catchability coefficients (Walker283

et al 2017) which are themselves uncertain and model-based. In this example we are284

only interested in the biomass density relative to 2010, and therefore the total catch285

from the IBTS survey is enough provided we assume that catchability coefficients286
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are constant over time. Thus each element of yt represents the log to base 10 of287

the total biomass (tonnes per kilometre squared) for one of our groups of species,288

averaged over year t, relative to 2010. Therefore,289

w(t) = fy(y
(t)) = 10y

(t)
.

The measurement error on the observations of the truth is assumed to be normally290

distributed on the log10 scale such that291

log10

(
ŵ(t)/ŵ(2010)

)
∼ N(y(t),Σy),

for t ̸= 2010. In this work we take Σy to be 2 log10(1.15) on the diagonal elements292

and 0 on the off diagonal elements. This was chosen so that it means that the293

standard deviation of the true biomass would be 15% of the actual amount caught.294

3.3 Simulators295

We have outputs from five different simulators all of which have been run with296

zero fishing pressure from 2014 onwards. A short summary of the simulators, their297

outputs with respect to this case study and their simulator-specific function, fi(·),298

can be found in Table 2. The ith simulator’s output is assumed to be normally299

distributed on the log10 scale,300

log10 u
(t)
i ∼ N(log10 û

(t)
i ,Σi),

with Σi fitted based on running simulator i many times (Leith and Chandler 2010;301

Chandler 2013). However, if this was not the case Σi could be estimated within the302

hierarchical system.303

14



3.4 Ensemble model304

Each element of x
(t)
i is the “best guess” of simulator i of the elements of y(t), for305

t = 1968, . . . , 2100, in log (base 10) tonnes per km squared of wet biomass. In this306

example we expect each of the simulators to converge to its own steady state, given307

that all external drivers are constant. This means that in equation 1 we expect Ri308

to tend towards 1 and Λi to tend towards 0. Furthermore, if a simulator reaches a309

stationary state before it has stopped running, then we know that it will be in that310

state forever. Simulator i’s individual discrepancy, γi + z
(t)
i , is thus modelled as311

γi ∼ N(0, C)

and312

z
(t)
i ∼


N(Riz

(t−1)
i ,Λi) if t ≤ 2013,

N(hz(Ri, ki, t)z
t−1
i , hΛ(t, ki)Λi) if 2014 ≥ t.

where313

hz(Ri, k, t) = Ri + (1−Ri)(1− hΛ(t, ki))

and314

hΛ(t, ki) = exp {−ki (t− 2013)} .

This is saying that, after the end of fishing, the variance of the truth of model i315

reduces and the amount that the last value of z
(t)
i relates to the next moves towards316

1 by a factor of exp(ki) each year. We take ki ∈ [0, 6], as there is not much difference317

numerically if ki goes above 6, with318

ki/6 ∼ Beta(ak, bk).

The diagonal elements of Ri fall between −1 and 1 with319

Ri + 1

2
∼ Beta(aR, bR)
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and the off-diagonal elements are set to 0. The simulator-specific variance param-320

eter, Λi, is decomposed into a diagonal matrix of variances, Πi, and a correlation321

matrix, Pi, such that322

Λi = ΠiPiΠi. (3)

The form of the prior distribution for the jth diagonal element of Πi was323

πij ∼ Gamma(απ,j , βπ,j).

Distributions over correlation matrices are complicated by the mathematical re-324

quirement of positive definiteness. In practice, we specify separate priors on the325

elements, and then condition on positive definiteness; the unconditional prior for326

the j, kth element of Pi is given by327

ρijk + 1

2
∼


Beta(aρjk, bρjk) if j ̸= k,

1 otherwise.

The difference between the truth at time t and the corresponding simulator con-328

sensus, µ(t), is then329

(
y(t)

)
−
(
µ(t) − µ(2010)

)
= η(t) + δ

with330

η(t) ∼ N(Rηη
(t−1),∆η). (4)

When the fishing is turned off, we are particularly uncertain about what will hap-331

pen; thus we will remove any direct relation between yt and yt+1 beyond that time.332

We will say that333

µ(t) ∼ N(µ(t−1), hΛ(t, kµ)∆µ) (5)

where kµ ∈ [0, 6], so that the simulator consensus reaches a stationary point, as the334

individual simulators do.335
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We focus on the subjective probabilities of a particular individual, in this case336

JLB. Her prior beliefs were elicited using the method described in O’Hagan et al337

(2006) and Alhussain and Oakley (2017). Details of the prior elicitation can be338

found in Appendix C. Due to the dimensionality and correlation of the uncertain339

parameter space, we fitted the model using No U-turn Hamiltonian Monte Carlo340

(Hoffman and Gelman 2014) in the package Stan (Gelman et al 2015).341

3.5 Results342

The ensemble model predictions show changes in the uncertainty of relative biomass343

over time for each group of species, including projections following a fishing closure344

in 2014 (Figure 2). Each plot shows the marginal posterior distributions of each345

element of y(t), for all t. Unsurprisingly, the ensemble model predicts common346

demersal fish increase following the fishery closure, as this group contains a lot of347

species targeted by fisheries.348

According to the ensemble model the probability that there will be a greater349

total biomass of common demersal in 2050 than in 2010 is 0.90. There is a similar350

number for sole (0.93) and for monkfish etc. (0.88) but it is lower for poor cod and351

rays (0.55) and for the other demersal species (0.17).352

The ensemble model also ‘predicts’ what happened before the data; that is, it353

gives posterior distributions for the actual values given the imperfect data and the354

simulator runs. Only sole and common demersal are output by simulators prior to355

1986 and this is reflected in the increased uncertainty as we move further back in356

time from 1986.357

The uncertainty in the prediction increases the further away from the obser-358

vations of the truth, both when projecting and hindcasting. The uncertainty also359

increases when there are fewer simulators that give outputs. All of the simulators360
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give outputs for the common demersal group, four explicitly and one implicitly,361

and therefore we are more certain about what will happen to it in the future than362

for poor cod and rays, where only three simulators predict values for the future and363

only one explicitly. The uncertainty is highest for other demersal species. This364

is understandable as only two simulators predict values for this group of species,365

neither of which does so explicitly.366

The absolute total biomass of demersal species is difficult to calculate here with-367

out information on the discrepancy between the simulator consensus and the truth.368

Although survey data are available, their relationship with the truth depends on the369

varying, and unknown, catchability coefficients for each of the groups. Although370

catchabilities can be estimated, for simplicity here we examine the total demersal371

biomass under the assumption that the groups had the same catchability coeffi-372

cients (Figure 3). Again there is high uncertainty about whether the biomass will373

grow relative to the biomass in 2010. However, what it was before 1986 is also quite374

uncertain. This is because of the uncertainty in the populations of Other demersal375

species.376

The median “best guess” of each of the simulators can also be compared across377

the different simulators (Figure 4). StrathE2E predicts quite a large increase in378

common demersal despite not explicitly outputting it. Mizer does not do a very379

good job of predicting the dynamics of sole, therefore the dynamics of the simulator380

consensus do not match the dynamics of mizer.381

The posterior predictive distribution for the relative truth in 2025 for common382

demersal and monkfish etc. are positively correlated with each other (0.28), albeit383

weakly. This suggests that learning something about the common demersal group384

would tell you something about monkfish etc. Hence the mizer simulator gives385

some information regarding the monkfish etc. despite not actually predicting it.386
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See Appendix D for the other correlations between the groups.387

4 Discussion388

By treating the simulator outputs as coming from a population of simulators and389

modelling this population, we have presented in this paper a general way of com-390

bining ecosystem simulators to inform scientists and decision makers about the391

consequences of management strategies. Our model combines many different simu-392

lators, exploiting their strengths and discounting their weaknesses (Chandler 2013)393

to provide synthetic and comprehensive information to support decision making.394

4.1 General model features395

One of the difficulties in building an ensemble model with ecosystem simulators396

is that the simulator outputs are often done on different scales and are not di-397

rectly comparable, for example StrathE2E models groups of species (e.g. pelagic,398

demersal) whereas mizer models major species individually. Our approach, unlike399

existing methods of combining simulators (e.g. Bayesian model averaging (Banner400

and Higgs 2017; Ianelli et al 2016)), allows us to combine outputs from these widely401

differing simulators. We achieve this by modelling what each simulator would pre-402

dict for each of the groups of species we are interested in, whether it is explicitly403

modelled or not by the simulator. For example, in the case study, StrathE2E only404

models the total demersal species. Using information from the other simulators re-405

garding the breakdown of demersal species and how the dynamics between species406

work, the ensemble model can say what StrathE2E would predict on a species level.407

In the case study, EwE and StrathE2E both implicitly predict groups of species.408

For EwE it is the sum of poor cod and rays and other demersal and for StrathE2E409
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it is the sums of all of the groups. As with the simulators that do not predict410

specific groups, we are able to infer what these simulators predict about implicit411

groups through correlations learned from other simulators. In this sense, the mizer412

model, which only predicts common demersal and sole, gives information about413

how StrathE2E divides its demersal species and therefore gives some information414

about other groups. Therefore, if we were interested in what would happen to the415

other demersals if we were to stop fishing, we should include all the simulators416

despite only two of them predicting it.417

Simulators that are predictably wrong are more informative than those that are418

unpredictably wrong, even if the latter are less wrong in the absolute sense. In our419

framework, we distinguish between short-term and long-term individual discrep-420

ancies, which allows us to distinguish between predictably wrong simulators with421

small short-term individual discrepancies, zi, and unpredictably wrong simulators.422

Furthermore, we allow the short-term individual discrepancies to be different for423

each group, thus allowing a simulator to contribute to the ensemble model for424

groups that it is informative about and be ignored for groups that it is not. In425

the case study, mizer does not predict the dynamics of sole very well and so the426

simulator consensus, µ, only weakly follows the mizer predictions. On the other427

hand, mizer does a reasonable job of predicting the dynamics of common demersal428

and therefore it contributes more to the simulator consensus for this group. Thus429

the ensemble model exploits mizer’s strengths, common demersal, and discounts its430

weaknesses, sole.431

The ensemble model enables formal quantification of uncertainty. This uncer-432

tainty reflects a specific individual’s updated beliefs having observed the simulators433

and the observation data (Robert 2007). The individual could be a scientist or a de-434

cision maker and could be informed by multiple experts (Albert et al 2012). Such435
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a framework could be used to help communicate uncertainty or enable decision-436

makers to directly quantify risks and therefore evaluate management trade-offs more437

rigorously (Harwood and Stokes 2003; Finkle 1990). The ensemble model takes ac-438

count of uncertainty from each of the simulators, through parameter uncertainty439

and structural uncertainty, data uncertainty, through noisy and possibly indirect440

observations of the truth, and uncertainty in the ensemble model parameters.441

As the simulators are describing the same system, we might expect the dynamics442

in the individual discrepancies to be similar. To reflect this, we allow the short-term443

individual discrepancies to come from some underlying distribution. Furthermore,444

in ecosystems simulators, the dynamics may be similar in direction but likely not in445

magnitude. To include this information in the case study, we split the short-term446

individual discrepancies, Λi, into correlations and magnitude (equation 3), allowing447

different levels of confidence for each. We used beta distributions for each of the448

off-diagonal elements of the correlation matrix and then conditioned on positive449

definiteness. This enabled us to learn about each element of the correlation matrix450

separately which is not possible in other formulations of the covariance matrix451

(Alvarez et al 2014). By acknowledging these features of simulators, we were able452

to better quantify the uncertainty.453

It was also important to use informative priors as none of the simulators explic-454

itly model other demersal. As there is no lower bound (on the log scale) for the455

values of the “best guess” of other demersal, we required some prior information456

about the distribution of the standard deviations, Π. This does suggest that the457

ensemble prediction is somewhat based on that of the priors for Λi. In practice,458

we suggest checking that your ensemble model predicts in a way that the decision459

maker believes before observing the truth, similar to the hypothetical data method460

of Kadane et al (1980). In the case study described here, we checked that the461
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dynamics of the biomasses prior to 1986 followed JLB’s beliefs.462

When building the ensemble model, how the species groups are decided depends463

on the question being asked. In the case study, we were interested in what would464

happen to demersal fish if we were to stop fishing, so we grouped the species into465

as few groups as possible. However, if we were interested in another question, for466

example if we had been interested in what would happen to commercial fish, we467

would divide the species into groups with commercial and non-commercial fish con-468

ditioned on species in each group being presented in exactly the same simulators.469

As the number of groups increases, the dimensions of the covariance matrices in-470

creases, so we advise that the number of groups be kept to a minimum as this would471

aid computation time and require less simulators and prior elicitation.472

Using the ensemble model developed here, there is no need to identify the “best473

model” driven by the question being asked (Dickey-Collas et al 2014), but one474

should include all available simulators. Rather than developing many simulation475

models to answer different specific questions, the ensemble model can be designed476

to answer the question at hand thus reducing computational costs. Furthermore,477

as the ensemble model implicitly weights the simulators by their strengths and478

weaknesses, it is better for a simulator to be good at modelling one aspect of the479

ecosystem rather than being average at modelling a lot of things (Anderson et al480

2017). Due to tractability it is not possible to explicitly show these weightings in481

the case study presented here, for an example of weightings in a more tractable482

example see Chandler (2013).483

The nature of the different ecosystem simulators capturing different processes484

can limit the number of models available to run certain scenarios (e.g. in climate485

scenarios where some but not all the simulators contain links to temperature). If we486

were interested in one of the scenarios that a specific simulator was unable to run,487
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we should still include that simulators in the ensemble model as it gives information488

about how species interact with one another as well as the state of the ecosystem489

up until the current time. To include this simulator in the ensemble, we could learn490

about how it differs from the simulators that were able to run the specific scenario491

and increase a simulator’s parameter uncertainty, Σi, as a function of time with in492

the future (Szuwalski and Thorson 2017).493

4.2 Future work and extensions494

Some ecosystem simulators are more similar than others, for example there are a495

number of size-based simulators in the marine literature (e.g. Blanchard et al 2009;496

Scott et al 2014) that are very similar, which may violate the exchangeability as-497

sumption made in Section 2. Additional hierarchy could be added to the ensemble498

model that would allow such simulators to have more similar discrepancies. In499

climate science, where the simulators are very similar to one another and phylo-500

genetic trees show the development history of each simulator (Knutti et al 2013),501

Demetriou (2016) added additional hierarchy allowing closely related simulators to502

have similar discrepancies. They found that the major source of uncertainty was503

due to the shared discrepancy, and the results of the ensemble model were close to504

when all the simulators were assumed to be exchangeable.505

In this paper, we have demonstrated the ideas and methods in cases where506

the quantities of interest are of fairly low dimension and have joint Gaussian dis-507

tributions. However, with the increased efficiency of new statistical software and508

algorithms (see e.g. Girolami and Calderhead 2011), it is possible to address larger509

problems involving more general distributions.510

The framework presented here is not exclusive to ecosystem simulators in fish-511

eries, but can be used to combine any mechanistic simulators in many areas of512
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ecology (e.g. Individual-based models, Railsback and Grimm 2012) or even other513

areas of research such as systems biology (Kuepfer et al 2007) and epidemiology514

(Lessler et al 2016).515

4.3 Conclusion516

This work allows for a synthesis of many modelling studies that have been and are517

being conducted in such a way that we can obtain more holistic knowledge over518

a wide scope of complex ecological systems. It also allows for including a formal519

quantitative understanding of uncertainties and knowledge gaps. This enables us520

to make comprehensive model projections that take into account all that we have521

learnt from the simulators collectively.522
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Table 1: A summary of the variables in the ensemble model. The ensemble model is run

for t = 1 . . . T .

Variable Dimension Times Description Relationship

y(t) n t = 1 . . . T The truth y(t) = y(t−1) + ϵΛ,t

w(t) ny t = 1 . . . T Possibly incomplete version

of the truth

w(t) = fy(y
(t))

ŵ(t) ny t ∈ S0 Noisy observation of w(t) ŵ(t) ∼ p(ŵ(t)|w(t))

δ n NA Long-term shared discrep-

ancy

η(t) n t = 1 . . . T Short-term shared discrep-

ancy

η(t) = Rηη
(t−1) + ϵη,t

µ(t) n t = 1 . . . T Simulator concensus µ(t) = y(t) + δ + η(t)

γi n NA Simulator i’s long-term in-

dividual discrepancy

z
(t)
i n t = 1 . . . T Simulator i’s short-term in-

dividual discrepancy

z
(t)
i = Riz

(t−1)
i + ϵz,t,i

x
(t)
i n t = 1 . . . T Simulator i’s best guess x

(t)
i = µ(t) + γi + z

(t)
i

u
(t)
i ni t = 1 . . . T Simulator i’s incomplete

version of x
(t)
i

u
(t)
i = fi(x

(t)
i )

û
(t)
i ni t ∈ Si The expectation of simula-

tor i’s output u
(t)
i

u
(t)
i = û

(t)
i + ϵui
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Figures692

1 A schematic that shows an example of the ensemble model at time t.693

In this example we have four simulators that are all able to predict694

the elements of y(t). Each simulator’s ‘best guess’, x
(t)
i , is observed695

with parameter uncertainty where û
(t)
i is the expected output of the696

ith simulator (see Section 2.1). The difference between the ith simu-697

lator’s ‘best guess’, x
(t)
i , and the simulator consensus, µ(t), is known698

as simulator i’s individual discrepancy and is split between its long-699

term, γi, and short-term, z
(t)
i , individual discrepancy (see Section700

2.2). The difference between the truth, y(t) and the simulator con-701

sensus, µ(t), is known as the shared discrepancy and is divided into702

long-term, δ, and short-term, η(t), shared discrepancy (see Section703

2.3). In addition, we do not directly observe the truth but we do704

observe a noisy version of it, ŵ(t) (see Section 2.4). . . . . . . . . . 37705

2 Estimates of the log biomass of each group of species relative to 2010.706

The solid line is the median and the dotted lines are the upper and707

lower quartiles. The first vertical line is at 1986, the year that we708

first have data, and the second line is in 2013, the simulated cessation709

of fishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39710

3 The total biomass of demersal species as predicted by the models711

relative to 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40712

4 The median best guess for the simulators (xi) for mizer (black), Fish-713

SUMs (purple), LeMans (green), EwE (red) and StrathE2E (pink)714

and the median simulator consensus (µ) and its quartiles in solid715

grey and dotted grey respectively. . . . . . . . . . . . . . . . . . . . . 41716
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Figure 1: A schematic that shows an example of the ensemble model at time719

t. In this example we have four simulators that are all able to predict the720

elements of y(t). Each simulator’s ‘best guess’, x
(t)
i , is observed with param-721

eter uncertainty where û
(t)
i is the expected output of the ith simulator (see722

Section 2.1). The difference between the ith simulator’s ‘best guess’, x
(t)
i , and723

the simulator consensus, µ(t), is known as simulator i’s individual discrep-724

ancy and is split between its long-term, γi, and short-term, z
(t)
i , individual725

discrepancy (see Section 2.2). The difference between the truth, y(t) and the726
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simulator consensus, µ(t), is known as the shared discrepancy and is divided727

into long-term, δ, and short-term, η(t), shared discrepancy (see Section 2.3).728

In addition, we do not directly observe the truth but we do observe a noisy729

version of it, ŵ(t) (see Section 2.4).730
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Figure 2: Estimates of the log biomass of each group of species relative to 2010. The

solid line is the median and the dotted lines are the upper and lower quartiles. The first

vertical line is at 1986, the year that we first have data, and the second line is in 2013,

the simulated cessation of fishing.
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2010.
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Figure 4: The median best guess for the simulators (xi) for mizer (black), FishSUMs

(purple), LeMans (green), EwE (red) and StrathE2E (pink) and the median simulator

consensus (µ) and its quartiles in solid grey and dotted grey respectively.
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