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Abstract 

Benthic biogeochemical processes in ocean margin sediments are of global 

significance, yet they remain poorly defined.  Here, the distribution of major, minor and 

trace elements in porewaters and sediments, together with measurements of microbially-

mediated organic carbon oxidation reactions were determined at sites above, within, and 

below the oxygen minimum zone (OMZ) on the Pakistan margin of the Arabian Sea.  

Sampling was conducted before and during the late-to-post southwest monsoon, with 

the goal of assessing how low bottom-water O2 concentrations and high organic matter 

depositional fluxes affect sediment processes. 

Element analysis revealed that the lithogenic fraction of Pakistan margin sediments 

was largely dominated by fluvial material, which was derived from the nearby River 

Indus.  In comparison, aeolian deposition on the Pakistan margins appeared to be 

negligible.  Element analysis also revealed that Fe and Mn were actively cycled at all of 

the Pakistan margin study sites; however, Mn supply to the OMZ sediments was limited 

by Mn reduction within the OMZ water-column.  In turn, Mn was effectively 

transported out of the OMZ and accumulated in underlying oxic sediments.  In contrast, 

Fe supply to the sediments appeared to be unaffected by the OMZ; however, benthic 

porewater Fe fluxes from the sediments to the water-column were documented at the 

OMZ sites.  A range of other redox sensitive elements (e.g. Ba, Mo, and U) were also 

cycled in the Pakistan margin sediments; however in comparison to sediments deposited 

on other upwelling affected continental margins, the degree of trace element cycling on 

the Pakistan margin is low. 

Sulphur cycling, was also investigated at the Pakistan margin sites.  Here direct 

measurements of sulphate reduction rates (
35

S-SO4
2-

 incubation) revealed an apparent 

inhibition of sulphate reduction in Arabian Sea sediments.  A number of factors were 

investigated as possible inhibiting mechanisms.  The dominance of unreactive marine 
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OM in the Pakistan margin sediments and microbial co-competition between sulphate 

reducing and iron reducing bacteria were suggested as potential limiting factors. 

Finally, the measured rates of Mn, Fe, and S-cycling at the Pakistan margin sites 

were combined with commensurate rates of O2 uptake and denitrification to examine if 

low-O2 concentrations within the OMZ suppressed microbially mediated C-oxidation 

reactions.  Considering both seasons, C-oxidation rates at the Pakistan margin sites were 

found to range from 0.73 to 4.86 mmol C m
-2

 d
-1

.  Generally, sites within the OMZ core 

and those at the lower OMZ transition had lower carbon oxidation rates (0.73-

2.90 mmol C m
-2

 d
-1

) than those located below the OMZ (3.13-4.86 mmol C m
-2

 d
-1

) 

which lie under oxygenated waters.  This suggests that low bottom-water O2 

concentrations may suppress overall rates of OM decomposition. 
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 2 

1.1. Geochemical significance of continental margin sediments 

The ocean margins comprise a comparatively small proportion of world ocean area 

(ca. 15 %), yet the biogeochemical processes occurring within margin sediments are of 

major importance (Berner, 1982; Walsh, 1991; Morford and Emerson, 1999; Zabel and 

Hensen, 2002).  Indeed, the burial of OM in margin sediments represents the largest 

long-term sink in the global C-cycle, supporting 40-90 % of contemporary oceanic C-

burial (Berner, 1982; Walsh, 1991; Hedges and Keil, 1995).  Additionally, ocean 

margins are also sites of intense OM recycling (e.g. Jahnke et al., 1990; Reimers et al., 

1992; Thamdrup and Canfield, 1996; Hartnett and Devol, 2003), and the scale of 

diagenetic reactions that accompany C-cycling in these environments are such that they 

too provide key source or sink terms in global element cycles (e.g. Devol, 1991; Calvert 

and Pedersen, 1993; Follmi, 1996; Morford and Emerson, 1999; Codispoti, 2007).  For 

example, rates of denitrification (the reduction of NO3
- to gaseous N2) and 

phosphogenesis (the accumulation of P in sediments) in margin sediments have been 

suggested to regulate oceanic primary productivity on both contemporary and 

geological timescales (e.g. Devol, 1991; Ganeshram et al., 1995; Altabet et al., 1995; 

Föllmi, 1996).  The retention or loss of other elements from margin sediments is also 

important.  For example, the remineralisation of minor and trace elements from margin 

sediments and their subsequent precipitation in abyssal sediments has been linked to the 

growth of economically important metalifferrous deposits (e.g. Koschinsky et al., 2001), 

whilst benthic fluxes of dissolved Fe from margin sediments to coastal waters have been 

suggested to influence rates of primary productivity (Bange et al., 2005; Moffett et al., 

2008; Pollard et al., 2009).  However, despite potential global significance; benthic 

processes in key margin environments (e.g. upwelling regions) have not been studied 

systematically or in sufficient detail to permit their full significance to be quantified. 
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1.2. Motivation and aims 

1.2.1. Research motivation 

It is clear that the biogeochemical processes operating within margin sediments have 

the potential to significantly influence total ocean elemental inventories, and through 

benthic-pelagic coupling, possibly exert positive or negative feedback controls on ocean 

primary productivity (§ 1.1).  Accordingly, the systematic characterisation of margin 

sediments (both solid-phase and porewaters) and their redox status, measurement of 

benthic microbial process rates (aerobic and anaerobic), and determination of benthic 

solute fluxes, represent key areas of study within the wider field of marine 

geochemistry.  These tasks provide the key motivation for this thesis, which seeks to 

examine contemporary element cycling in a poorly characterised region of the world’s 

oceans, namely, the Pakistan margin of the Arabian Sea. 

 

1.2.2. Research aims 

Previous work (see § 1.5) has highlighted that biogeochemical processes occurring 

within the Arabian Sea are exceptional in both magnitude and nature.  However, whilst 

processes operating within the pelagic environment are reasonably well defined (see 

§ 1.5 and reviews by Naqvi et al., 2005; Wiggert et al., 2005; and Bange et al., 2005), 

studies examining benthic processes have been fewer and narrower in scope.  Of these, 

most have focused on the biogeochemistry of abyssal sediments (see review by 

Pfannküche and Löchte, 2000), and only limited information is available for continental 

margin sediments.  Regardless, findings to date from the Oman, Pakistan, and Indian 

margins highlight that these sediments may provide globally significant sinks for C, N, 

P, and a range of trace elements (see review by Cowie, 2005; Morford and Emerson, 

1999).  However, without detailed characterisation of the region’s sediments (both 

solid-phase and porewaters), measurement of microbial process rates (aerobic and 
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anaerobic), and quantification of benthic fluxes, the mechanisms that control these 

processes, and their relative significance, cannot be quantified.  These matters are 

addressed in this contribution by examining sediment biogeochemistry along a depth 

transect on the Pakistan margin of the Arabian Sea, at a range of sites that exhibit 

markedly different redox conditions, OM availability, and benthic community structure.  

Namely, in Chapter 3, the rates and mechanisms governing sedimentary Mn and Fe 

cycling on the Pakistan margin are assessed.  Thereafter, in Chapter 4, rates of sulphate 

reduction in Pakistan margin sediments are directly measured for the first time and the 

mechanisms that govern S-cycling in the Arabian Sea are evaluated.  Further, in Chapter 

5, C-cycling is investigated in the Pakistan margin sediments.  Here, measured rates of 

Mn, Fe, and SO4
2- reduction (Chapters 3 and 4) are combined with commensurate rates 

of O2 consumption and denitrification in a diagenetic model, to quantify if C-oxidation 

is suppressed under OMZ conditions.  Lastly, in Chapter 6, spatial distribution patterns 

for major, minor, and trace elements in sediments from the Pakistan margin are 

determined and these data are used to assess the factors that control sediment 

composition (i.e. lithogenic flux vs. OM flux vs. diagenesis vs. low bottom water O2).  

Furthermore, minor and trace element signatures from the Pakistan margin sediments 

are compared to those from other OMZ affected margins. 

 

1.3. Thesis structure 

In this chapter (Chapter 1), the key biogeochemical processes operating within 

margin sediments are described (§ 1.4) and background information detailing the 

geography, climatology, and oceanography of the wider study area (Arabian Sea) is 

provided (§ 1.5).  Thereafter, the remainder of this thesis is divided as follows: Chapter 

2 describes general sampling and analytical methods.  Subsequently, four research 

chapters (Chapters 3-6) detail the contemporary biogeochemistry of sediments on the 
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Pakistan margin.  Specifically, Chapter 3 examines manganese and iron cycling; 

Chapter 4 examines sediment sulphur cycling; Chapter 5 examines benthic C-oxidation; 

and Chapter 6 examines major, minor, and trace element distribution patterns.  In an 

effort to aid clarity, each research chapter have been written in a stand alone format.  

Finally, a brief synthesis and recommendations section is presented in Chapter 7. 

 

1.4. Sediment geochemistry 

1.4.1. Diagenesis 

The geochemistry of marine sediments reflects both the composition of the material 

initially deposited in the sediments and the physical, chemical, and/or biological 

processes that affect this material after its deposition.  These processes fall within the 

general category of what is commonly referred to as early diagenesis (Berner, 1980).  It 

is now recognised that the majority of diagenetic processes in sediments either directly 

or indirectly result from microbially-mediated metabolic redox reactions, which govern 

OM remineralisation. 

 

1.4.2. Metabolic pathways 

All forms of life have two basic metabolic pathways, anabolism and catabolism.  

Anabolism is an assimilative pathway, whereby cells use energy to synthesise molecules 

from smaller base units.  The energy that is required to fuel this process is provided 

through catabolism, a dissimilative energy yielding processes.  Both processes utilise 

redox reactions, which involve the transfer of electrons from one chemical species to 

another.  Here, the chemical species with the most negative electrode potential (electron 

donor) transfers electrons via an intermediate carrier enzyme to a chemical species that 

has a more positive electrode potential (terminal electron acceptor).  The net free energy 

gain from this electron transfer is known as the standard Gibbs free energy (�Gº), and 
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microbes seek to maximise the �Gº of any given redox reaction.  Oxygen presents the 

highest Gibbs free energy yield per mole of carbon oxidised, and as such is used as the 

primary electron acceptor (Froelich et al., 1979). However, as the concentration of 

accepting species is finite, the terminal electron acceptors (TEAs) alter as oxidants are 

consumed.  A stepwise reaction series follows, whereby bacteria selectively use a 

succession of electron acceptors which yield sequentially lower levels of 

thermodynamic advantage (Figure 1.1).  Using the diagenetic scheme outlined by 

Froelich et al., (1979), the diagenetic sequence proceeds via two end-member states: (1) 

aerobic respiration, which occurs in the presence of O2, and (2) anaerobic respiration, 

which begins when O2 is depleted.  Here, NO3
-, Mn4+/3+, Fe3+, and SO4

2- are 

sequentially used a TEAs. 

 

 

1.4.3. Redox Zonation 

1.4.3.1. The pelagic zone 

Diagenesis begins in the pelagic environment, where heterotrophic organisms 

metabolise sinking organic phases via a series of catabolic reactions (Figure 1.1).  

Labile organic phases are preferentially consumed on transit through the water column 

and it is estimated that only a minor amount of the original primary productivity is 

exported to the benthos.  As a result, the OM that reaches the benthos is usually highly 

altered, with proteins and other nitrogen containing compounds preferentially 

consumed, followed by carbohydrates and lipids.  After deposition, the reduction of 

TEAs results in redox zonation of the sediments. 
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Figure 1.1. Sequence of microbially-mediated redox processes, demonstrating the free energy 

yield associated with each electron acceptor per half reaction, in kcal per mole of carbon 

oxidised at pH 7 (inset table). From Stumm and Morgan, (1996). 

 

1.4.3.2. The oxic zone 

In a situation with oxygenated overlying waters, dissolved O2 will be present in the 

upper layers (0-10 cm) of the sediments.  Studies of O2 distribution in these 

environments generally document the rapid removal of O2 with depth, indicating the 

action of aerobic heterotrophic bacteria (e.g. Reimers et al., 1986).  Decomposition in 

the presence of O2 proceeds rapidly, producing the by-products of CO2 and NH4
+.  

Assuming the OM undergoing degradation has a chemical composition of (CH2O)106 

(NH3)16 (H3PO4) (Redfield, 1958), aerobic degradation can be summarised as 

Equation 1.1: 
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5(CH2O)106 (NH3)16 (H3PO4) + 690 O2 � 530 CO2 + 80 HNO3 + 5 H3PO4 + 610 H2O 

(Equation 1.1) 

 

Aerobic respiration has typically been considered to be the dominant C-oxidation 

pathway in marine sediments.  Indeed, at a range of abyssal sites, > 90% of sediment C-

oxidation has been attributed to aerobic respiration (e.g. Grundmanis and Murray, 

1982).  In contrast, only 15-20 % (global average) of OM decomposition in coastal 

sediments is coupled to aerobic respiration (Thamdrup, 2000).  Here, O2 is often 

preferentially consumed through re-oxidation of upward diffusing reduced compounds 

(e.g. Mn2+, Fe2+, NH4
+, H2S), that are produced during anaerobic respiration (Canfield et 

al., 1993b).  Consequently, the oxic zone of sediments can regulate the fluxes of these 

reduced chemical species across the sediment-water interface. 

 

1.4.3.3. The suboxic zone 

In the suboxic zone, the use of TEAs other than O2 begins (Figure 1.1).  Nitrate 

reduction generally follows rapidly upon the depletion of O2 and yields H2O, CO2 and 

inorganic N species as by-products. Nitrate reducers are commonly facultative 

anaerobes and the overall processes of dissimilatory NO3
- reduction actually comprises 

two pathways, namely nitrate-ammonification (end product NH3), and the more 

important denitrification (end product typically gaseous N2).  The first step in either 

pathway is the reduction of NO3
- to NO2

- (Equation 1.2).  Certain bacteria (e.g. E. coli) 

either excrete the NO2
- or reduce it further to NH3 (Neubauer and Götz, 1996).  In 

contrast, other bacteria (e.g. Pseudomonas) reduce NO3
- to NO2

-, then NO2
- to N2O, and 

finally N2O to N2 (Equations 1.3 and 1.4), although the final stage of the stepwise 
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reaction series is not always completed.  Overall, OM oxidation coupled to 

denitrification can be summarised in Equation 1.5. 

 

NO3
- + 2H+ + 2e- � NO2

- + H2O (Equation 1.2) 

NO2
- + 6H+ + 4e- �  N2O + 3H2O (Equation 1.3) 

N2O + 2H+ + 2e- � N2 + H2O  (Equation 1.4) 

 

(CH2O)106 (NH3)16 (H3PO4) + 94.4 HNO3 � 106 CO2 + 55.2 N2 + H3PO4 + 177.2 H2O 

(Equation 1.5) 

 

Interestingly, in recent decades, two alternative reaction pathways concerning N have 

been recognised in marine sediments.  Anoxic nitrification coupled to the reduction of 

Mn4+/3+ has been described by several authors (e.g. Aller and Aller, 1998; Mortimer et 

al., 2004), whilst others have documented the anaerobic oxidation of NH4
+ coupled to 

the reduction of NO2
-, forming N2 (The anammox reaction; Thamdrup and Dalsgaard, 

2002; Dalsgaard et al., 2005). 

When NO3
- is consumed, the reduction of Mn- and Fe-oxides becomes the main 

processes governing OM oxidation (Figure 1.1 and Equations 1.6 and 1.7), with Mn2+ 

and Fe2+ produced as a by-products.  However, whilst many bacteria are capable of 

facilitating Mn- and Fe-reduction (e.g. bacteria of the genera Geobacter and 

Shewanella; Lovely and Philips, 1987; Lovely and Philips, 1988; Myers and Nealson, 

1988), not all Mn- and Fe-oxides are equal with regard to their propensity to be reduced.  

For instance, amorphous oxides with high surface areas are much more reactive 

compared to more crystalline oxides with low surface areas (Lovely and Philips, 1987; 

Burdige et al., 1993; van der Zee and van Raaphorst, 2004).  Furthermore, recent work 

has shown that Mn3+-oxides are more reactive than Mn4+-oxides (van der Zee and van 

Raaphorst, 2004; Anschutz et al., 2005).  The reduction of Mn- and Fe-oxides also 
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presents bacteria with a problem.  Whereas aerobes rely on the diffusion of O2 across 

the cell membrane, and NO3
- and SO4

2- reducers can transport dissolved TEAs into the 

cell cytoplasm, metal reducing bacteria must reside on their (solid) TEAs surface and as 

a consequence, Mn- and Fe-reduction in sediments are considered to be surface limited. 

 

(CH2O)106 (NH3)16 (H3PO4) + 236 MnO2 + 472 H+ � 236 Mn2
+ + 106 CO2 + 8N2 + H3PO4 + 336 

H2 

(Equation 1.6) 

 

(CH2O)106 (NH3)16 (H3PO4) + 212 Fe2O3 + 848H+ � 424Fe2
+ + 106CO2 + 16NH3 + H3PO4 + 530 

H2O 

(Equation 1.7) 

 

In addition to the direct enzymatic reduction of Mn- and Fe-oxides, the metabolic by-

products of microbially-mediated reactions can indirectly facilitate metal reduction.  For 

example, Fe2+ can reduce Mn-oxides (Myers and Nealson, 1988), whilst H2S produced 

during SO4
2- reduction can reduce both Mn and Fe-oxides (Canfield et al., 1993b). 

 

1.4.3.4. The anoxic zone 

Dissimilatory SO4
2- reduction (Equation 1.8) becomes important when NO3

-, Mn, 

and Fe inventories are largely depleted.  A diverse and heterogeneous range of bacteria 

can use SO4
2- as a TEA, and the availability of the SO4

2- anion in the marine 

environment (nominal seawater concentrations ca 30 mM L-1) means that sulphate 

reduction accounts for approximately 50 % of anaerobic C-oxidation (on average) in 

margin sediments (Thamdrup, 2000).  A range of different electron donors can be used 

by SO4
2- reducers, but the inefficient yield of SO4

2- reduction (Figure 1.1) brings slow 

growth to sulphate reducing populations. 
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(CH2O)106  (NH3)16  (H3PO4) + 55 SO4
2- � 106CO2 + 16NH3 + 55S2

- + H3PO4 + 106H2O 

(Equation 1.8) 

 

 

Following SO4
2- reduction, the final step in anaerobic OM oxidation is 

methanogenesis (Figure 1.1).  Here, strict anaerobic Archaea (e.g. Mathanococcus) 

synthesise methane from fermentation products via two reaction pathways (Equations 

1.9 and 1.10). 

 

 

CH3COOH � CH4 + CO2  (Equation 1.9) 

CO2 + 8H2 � CH4 + 2H2O  (Equation 1.10) 

 

 

1.5. Study Area – The Arabian Sea 

1.5.1. Geography 

The geographical context of the Arabian Sea can be seen in Figure 1.2.  The basin is 

located in the northwestern Indian Ocean and is bound by the Horn of East Africa and 

the Arabian Peninsula to the west, Pakistan and Iran to the north, and the Indian 

Peninsula to the east.  The extent of the Arabian Sea is arbitrarily defined; stretching 

from Goa along the western side of the Laccadive Islands and the Maldives Islands, 

along the equator and thence to Kenya. The area described occupies approximately 6.2 

x 106 km2, not including the Gulf of Oman and the Gulf of Aden. 
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Figure 1.2.  Map of the Arabian Sea (depth contours at 500 m intervals). 

 

1.5.2. Climatology 

1.5.2.1. Monsoon Seasonality 

‘Monsoon’ is derived from the Arabic word ‘������’ (mausem), which means season.  

In English, the term was borrowed more directly from the Portuguese, monção, and 

possibly via  early modern Dutch,  monson.  The term arose in the 16 th century during 

the rise in navigation across the Indian Ocean because the monsoonal winds were so 

critical to sailing (Warren, 1987). 

At present, the term monsoon is most often applied to the seasonal reversals of wind 

direction.  The Arabian monsoon cycle occurs because of pressure differences 

originating between the Asian continent and the Indian Ocean, which result from the 

differing specific heat, and heat capacity, of the land and water.  As water has twice the 
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specific heat of land and a greater heat capacity, the ocean responds to heat input by 

warming or cooling at a rate slower than that of land.  Thus, in summer, land reaches a 

higher temperature than the ocean.  The hot air over the land rises, creating an area of 

low pressure.  This warm air is replaced with inflowing maritime air, creating the 

Southwest Monsoon (SWM).  Conversely, in winter, the land cools quickly while the 

ocean retains heat for longer.  The hot air over the ocean rises, creating an area of low 

pressure that is replaced by inflowing continental air.  This reversal of wind flow is 

known as the Northeast Monsoon (NEM).  This semi-annual reversal of wind direction 

is highly repeatable. 

 

1.5.2.2. The Southwest Monsoon and the Autumn Intermonsoon 

During the SWM (June – September), easterly equatorial trade winds cross the 

equator, are deflected over Eastern Africa, and through Coriolis forcing, form a broad 

south-westerly flow (Figure 1.3).  Surface winds blowing from Eastern Africa across the 

basin remain remarkably unidirectional and maintain a relatively constant magnitude 

(~ 15 m s-1), being strongest in a low-level atmospheric jet, the Findlater jet (Findlater, 

1969 and 1974).  Reputedly, the SWM produces the strongest maintained oceanic winds 

outside the Southern Ocean.  After the SWM, a transitional Autumn Intermonsoon 

period (AIM, October – November) is experienced, during which light winds of no 

definite trajectory prevail. 

 

1.5.2.3. The NEM and SIM 

During the NEM (November – March), wind velocities strengthen to ~ 5 m s-1 and 

surface directions reverse to form a broad northeasterly flow of cool, dry air across the 

basin (Figure 1.3).  After the cessation of the NEM, the Spring Intermonsoon period 
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(SIM, March – June) is typified by a weak northwesterly flow, which prevails until the 

initiation of the next SWM. 

 

1.5.3. Physical Oceanography 

1.5.3.1. Ocean circulation during the SWM 

Seasonal variations in wind stress imparted by the monsoons create a basin wide 

seasonally reversing, complex surface hydrography.  The area is typified by an interplay 

of mechanical stirring, convective overturning, coastal and open ocean upwelling, and 

downwelling.  During the SWM, a broad north-eastward flow, with an overall 

clockwise motion is suggested by ship drift currents (Schott and McCreary, 2001); 

however, the formation of eddy systems such as the Socotra Eddy (SE), and the Great 

Whirl (GW) add complexity to the current regime (Figure 1.4).  Deep water upwelling 

resulting from the influence of wind stress curl, is readily observed along the Omani and 

Somali coasts.  Lateral advection of the upwelled waters occurs along the trajectory of 

the mean SWM winds, pushing nutrient rich upwelled waters eastwards across the basin 

(Morrison, 1997; Brink et al 1998; Lee et al, 2000).  Other circulation cells exist along 

the Omani coast where upwelled waters are transported hundreds of kilometres offshore 

as filaments or squirts (Flagg and Kim, 1998; Brink et al., 1998).  A strong coastal 

current known as the Ras al Hadd Jet develops along the southeastern coast of Oman, 

transporting upwelled waters northeastwards (Bohm, 1999).  Further offshore, the 

interior of the Arabian Sea is filled with mesoscale eddy systems (Flagg and Kim, 

1998). In addition, the central basin Surface Mixed Layer (SML) shallows to the north 

and deepens to the south.  This is argued to be indicative of open ocean upwelling and 

downwelling, where, lateral variations in windstress curl at either side of the Findlater 

Jet facilitate upwelling to the north of the windstress maximum and downwelling to the 

south (Bauer et al., 1991; Brock et al., 1991).  In contrast, recent research has suggested 
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Figure 1.3. Surface level (1000 mb) mean wind vectors and velocity during the 2003 SWM 

(top) and NEM (bottom).  Data is from the online Ingrid map room 

(http://iridl.ldeo.columbia.edu). 
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that observed SML trends result through combination of wind driven entrainment, 

upwelling, and horizontal advection of coastal waters, rather than solely through open 

ocean upwelling (Lee et al., 2000).  Along the eastern margin of the basin, the West 

Indian Coastal current (WICC) and the Southwest Monsoon Current (SMC) exit the 

basin to the east (Schott and McCreary, 2001). 

 

1.5.3.2. Ocean circulation during the NEM 

During the NEM, the reversal of wind direction is matched by oceanic surface 

currents, with mean flow occurring in an anticlockwise direction (Figure 1.5).  An 

absence of upwelling during the NEM is highlighted by a basin wide uniform SML 

depth.  However, the SML has been observed to deepen throughout the NEM (Bauer et 

al., 1991).  It is suggested that NEM winds promote Ekman pumping, convective 

overturning and turbulent mixing, which combine to subduct surface waters (Morrison, 

1997; Schott and Fischer, 2000; Lee et al., 2000).  Additionally, along the rim of the 

northern Arabian Sea, mean flow during the NEM is westward with downwelling and 

an offshore directed pressure jet evident off the Omani coast (Shi et al., 2000).  Along 

the Indian coast, the WICC reverses flowing northwards.  This brings water from the 

Bay of Bengal into the Arabian Sea (Schott and McCreary, 2001). 

 

1.5.3.3. Ocean circulation during the Intermonsoons 

The early AIM is dominated by remnant features of the SWM.  The continued presence 

of the Ras al Hadd jet and the presence of cold upwelled waters have been noted to 

persist for at least one month after the cessation of the SWM (Flagg and Kim, 1998).  

However, by the end of the AIM, characteristic light winds and clear skies promote 

thermal stratification of the surface ocean (Kumar et al., 2001).  During the SIM, clear 
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skies and light winds promote heating and evaporation and thermal stratification of the 

surface ocean results (Kumar et al., 2001). 

 

 

Figure 1.4.  A schematic representation of the identified current branches during the Southwest 

Monsoon, including some choke point numbers (Sv = 106 m3s-1), from Schott and McCreary 

(2001).  Current branches identified (also see Figure 1.5) are the South Equatorial current 

(SEC), South Equatorial Counter Current (SECC), Northeast and Southeast Madagascar Current 

(NEMC and SEMC), East African Coast Current (EACC), Somali Current (SC), Southern Gyre 

(SG), and Great Whirl (GW) and associated upwelling wedges, Socotra Eddy (SE), Ras al Hadd 

Jet (RHJ) and upwelling wedges off Oman, West Indian Coast Current (WICC), Laccadive 

High and Low (LH and LL), East Indian Coast Current (EICC), Southwest and Northeast 

Monsoon Current (SMC and NMC), South Java Current (JC) and Leeuwin Current (LC). 

 

1.5.3.4. Water masses 

A composite temperature salinity (T/S) diagram (Figure 1.6) illustrates the complex 

properties of water mass structure in the Arabian Sea.  Three basic water masses can be 

identified; (i) those generated within the open Indian Ocean due to subduction, (ii) those 

formed through mixing of other water masses, and (iii) those entering the basin from 

outside sources (Schott and McCreary, 2001). 
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Three main water masses form the basic large scale structure of the Arabian Sea 

SML: Arabian Sea Water (ASW), Bay of Bengal Water (BB) and Persian Gulf Water 

(PGW) (Morrison, 1997; Schott and McCreary, 2001).  Arabian Sea Water (ASW) is 

formed via subduction in the northern Arabian Sea during the NEM.  ASW enters along 

the upper thermocline and spreads southwards as a salinity maximum just under the 

SML (Morrison, 1997).  Low salinity BB, which is often identified in the eastern 

Arabian Sea, is generated through the combined effects of river discharge and high 

precipitation (Straamma et al., 1996).  PGW, a salty, near surface water mass enters via 

the Strait of Hormuz.  PGW is highly saline and is moderately oxygenated (Morrison, 

1997; Swallow et al., 1984).  PGW spreads southwards at a water depth of 250-300 m, 

however its influence is not thought to extend far beyond its source region in the 

northern Arabian Sea (Morrison, 1997). 

 

 

 

Figure 1.5.  As per Figure 1.4 but during the NEM. 
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Below the SML, North Indian Surface Water (NICW), an aged component of the 

Indian Central Water (ICW), enters along the lower thermocline.  ICW forms in the 

subtropics of the southern hemisphere.  The ICW spreads westward with the South 

Equatorial Current (see Figures 1.4 & 1.5) and then northward across the equator with 

the Somali Current, where it is then known as the NICW.  Here the NICW oxygenates 

the upwelling waters off Somali and Oman (Schott and McCreary, 2001).  A range of 

other water masses enter below the SML via the Indonesian passages.  These water 

masses are thought to originate from the thermocline of the North Pacific and are 

heavily mixed when crossing sills in the Indonesian passage.  These water masses are 

referred to as either Banda Sea Water (BSW) or as Australian Mediterranean Water 

(AAMW) (Schott and McCreary, 2001). 

Other intermediate waters enter from the south across the equator along the western 

margin of the Arabian Sea.  The upper layers consist of highly oxygenated waters which 

are formed in the southern part of the sub-tropical gyre between 30-40º S.  At greater 

depths we find Antarctic Intermediate Waters (AAIW), which are characterised by low 

salinity and low O2 content (Swallow et al., 1984).  AAIW is generated by subduction in 

the sub-polar frontal zone.  Along the same density gradient, Red Sea Water (RSW), a 

warm, moderately oxygenated water mass enters the basin via Strait of Hormuz.  The 

distribution of RSW in the northwest Indian Ocean is heterogeneous due to lateral 

mixing and incorporation in intense eddies (Wrytki, 1971; Morrison, 1997; Schott and 

McCreary, 2001). 

Water mass input at abyssal depths is largely obstructed by deep ridges.  However, 

O2 poor, highly saline, Indian Deep Water (IDW) is specific to the Arabian Sea.  IDW is 

thought to originate through entrainment of intermediate water masses with deep 

upwelling Lower Circumpolar Deep Water (CDW) (Schott and McCreary, 2001). 
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1.5.4. Pelagic biogeochemistry 

1.5.4.1. Monsoon driven primary productivity 

The Arabian Sea is characterised by monsoonal coupling between the atmosphere and 

ocean (see §1.5.2-1.5.3).  The resultant seasonal upwelling, convective overturning, and 

basin wide advection of nutrient rich waters, is matched by strong seasonal oscillations 

in biological primary productivity.  The monsoonal climatology has established a 

gradient  from eutrophic  conditions in the northwest, to oligotrophic  conditions in the  

 

 

Figure 1.6. Temperature-Salinity diagram of Indian Ocean water masses, from Schott and 

McCreary, (2001).  Climatology for the Bay of Bengal (BB), northern Arabian Sea (AS), 

equatorial region of the western basin (EQ), South Equatorial Current (SEC), western exit of the 

Indonesian Throughflow (ITF), Leeuwin Current (LC), and the Somali current (SC) is given.  

Core water masses indicated are the Circumpolar Deep Water (CDW), Indian Deep Water 

(IDW), Antarctic Intermediate Water (AAIW), Indian central Water (ICW), Red Sea Water 

(RSW), Persian Gulf Water (PGW), and Arabian Sea Water (ASW).  Profiles are from 

respective winter seasons in each hemisphere. 
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southeast (Qasim, 1982, Morrison et al., 1999; Pfannkuche and Löchte, 2000; Wiggert 

et al., 2005).  Primary productivity is seen to follow this trend, with highest rates of 

productivity evident in the northern coastal areas (Qasim, 1982; Wiggert et al., 2005).  

The SWM and NEM dominate the annual productivity cycle (Figure 1.7).  During the 

SWM, a combination of upwelling, wind driven mixing, and lateral advection of 

upwelled waters, supply nutrients to the SML, which in turn supports high rates of 

productivity (McCreary et al., 1996; Kumar et al., 2001).  During the NEM, primary 

productivity is supported by wind driven convective deepening, which brings nutrient 

replenishment to the SML.  Traditionally, productivity during the NEM was thought to 

be lower than during the SWM.  However, recent observations suggest that productivity 

during the NEM is comparable to that of the SWM (Morrison et al., 1999; Wiggert et 

al., 2005). 

During the AIM and SIM, productivity is greatly reduced (Figure 1.7), as high solar 

isolation and quiescent winds promote upper ocean stratification, which in turn 

encourages the development of oligiotrophic conditions.  Regardless, the high 

productivity experienced during the SWM and NEM ensure that the Arabian Sea 

accounts for ~ 5 % of global marine primary productivity (Qasim, 1977 and 1982). 

 

1.5.4.2. OM export flux 

The Arabian Sea is subject to temporally and spatially variable monsoonal inputs of 

autochthonous OM, aeolian material, and fluvial runoff (Rixen et al., 2005).  Regional 

trends in primary productivity, monsoonal wind tracks, and distance from dust source 

regions control the quantity of export flux (Haake et al., 1993).  Particulate Organic 

matter (POM) dominates over lithogenic material in sinking particles and makes up 

more than 80 % of the total fluxes (Haake et al., 1993).  POM export varies as a 

function of depth, season and distance from the coast, with highest fluxes resulting from 
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monsoon driven primary production (Nair et al., 1989; Haake et al., 1993, Honjo et al., 

1999; Rixen et al., 2000).  An annual bi-modal pattern of POM flux is observed in 

sediment traps off Oman (Haake et al., 1993; Honjo et al., 1999; Lee et al., 1998; 

Buesseler et al., 1998), Somali (Broerse et al., 2000), Pakistan (Suthhof et al., 2000), 

and points north of 10ºN (Honjo et al., 1999).  Flux along the western basin is 

dominated by a strong SWM signal and a weaker NEM signal (Honjo et al., 1999).  

Flux in the eastern basin is virtually identical during both monsoons (Suthhof et al., 

1999).  Inter-annual variability in POM export is remarkably small during the SWM.  

Conversely, variability is marked during the NEM, indicating that nutrient supply and 

primary productivity during this season may be more ephemeral (Haake et al., 1993). 

POM export flux shows rapid attenuation with depth, indicating that extensive 

biological remineralisation occurs in the water column (Figure 1.8; Lee et al., 1998).  

The largest rates of POM remineralisation are supported in the upper water column 

(Buesseler et al., 1998; Lee et al., 1998) and within surface sediments (Lee et al., 1998).  

Annual estimates of POM export efficiency to the abyssal seafloor show a marked 

decrease with distance from the coast, ranging from 0.2 % under the Omani coastal 

upwelling regions, to 0.01 % in the central basin (Lee et al., 1998). 

 

1.5.4.3. Lithogenic export flux 

Lithogenic material is a major component of export flux in the Arabian Sea.  The basin 

is surrounded by arid land masses: The Horn of Africa and the Arabian Peninsula to the 

west, the Iran-Makran-Thar desert regions to the north, and the coastal highlands of 

India to the east.  In addition, the Indus, Tapti and Narmada rivers transport significant 

levels of fluvial discharge into the eastern Arabian Sea.  Total fluvial sedimentary 

discharge to the Arabian Sea is thought to be approximately 110 Tg yr-1, with the 

greatest discharge occurring during the wet SWM season (Borole, 1988). 
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Figure 1.7. Monthly primary production at Five BIGSET sampling locations during 1996, as 

calculated from satellite image chlorophyll data, demonstrating the general NW – SE gradient in 

primary productivity and bimodal pattern of monsoon forced primary productivity.  From: 

Pfannkuche et al., (2000). 
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Influence of fluvial input decreases in a north-south and east-west direction (Kolla et al., 

1981; Ramaswamy et al., 1991; Rixen et al., 2005).  The Indus River drains the 

Himalayas and arid regions of Pakistan and India.  Prior to the 1980’s, it is estimated 

that the Indus transported 250 x 1012 g yr-1 of sediment into the Arabian Sea.  However, 

since the construction of the Tabela dam system in the 1980’s, sediment discharge has 

decreased to around 50 x 1012 g yr-1 (Milliman et al, 1984). 

 
 

Figure 1.8. Semi-log plot showing average organic carbon fluxes in the Arabian Sea water 

column and surface sediments off Oman during 1995-1996; from Lee et al., (1998).  Trap 

locations are: S1 18o50N, 57o80E; S2 17o70N, 59o00E; S3 17o10N, 59o80E; S7 15o20N, 61o70E; 

S15 10o00N, 65o00E.  Double bars indicate the depth of the sea floor at each mooring location. 

 

Aeolian inputs to the Arabian Sea, estimated to be in the region of 75–115 Tg yr-1, 

are thought to dominate lithogenic input in regions removed from fluvial input (Rixen et 

al., 2005).  Aeolian inputs vary both spatially and temporally, showing strong 

monsoonal coupling (Haake et al., 1993).  Satellite derived estimates of atmospheric 
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dust loading suggest that 80-90 % of annual aeolian input occurs during the SWM 

(Sirocko and Sarnthein, 1989).  Sediment trap observations (Ramaswamy et al., 1991, 

Honjo et al., 1999) and surface ocean dissolved metal concentrations (Measures and 

Vink, 1999; Balakrishnan et al., 1999) confirm this inference.  In contrast, physical 

measurement of aeolian deposition at the ocean surface has shown that dust levels are 

actually lowest during the SWM (mean 0.07 ng m-3), highest during the NEM (mean 0.7 

ng m-3), and modest during intermonsoon periods (Tindale and Pease, 1999).  Tindale 

and Pease (1999), suggest that remotely sensed data during the SWM actually reflect an 

increase in the occurrence of sea salt aerosols, which are generated by the strong SWM 

winds.  It is suggested that the aerosols may act as an efficient binding agent for aeolian 

materials; thus providing a mechanism for maintaining high aeolian input to the ocean, 

whilst simultaneously permitting direct measurement of low dust in the atmosphere 

(Tindale and Pease, 1999).  Regardless of the mode of deposition, sufficient information 

exists to surmise that the dominant input of aeolian and fluvial material occurs during 

the SWM.  Indeed, > 40 % of the annual lithogenic input to the Arabian Sea is 

calculated to occur during the SWM (Ramaswamy et al., 1991). 

 

1.5.4.4. Oxygen depletion 

In the modern oceans, three major upwelling regions have associated stable OMZs; 

namely, the Arabian Sea, the eastern tropical Pacific, and the western coast of Africa.  

Of these, the Arabian Sea OMZ is reputedly the world’s thickest, spanning the basin at a 

nominal depth range which extends from the base of the euphotic zone (ca. 100 m) to 

approximately 1000 m water depth (Wyrtki, 1971) (Figure 1.9).  This exceptionally 

thick OMZ is a biogeochemical response to seasonal primary productivity (§ 1.5.4.1); 

whereby the O2 demand associated with decomposition of sinking POM (§1.5.4.2) 

outstrips O2 supply (Swallow, 1984; Olson et al., 1993).  In the Arabian Sea, the 
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majority of O2 comes from the south through inputs of poorly oxygenated ICW 

(dissolved O2 ~ 45 µM, Olson et al., 1993).  However, equatorial dynamics act as a 

barrier to inter-hemispheric water exchange and consequently, input of ICW only occurs 

along the western margin during the SWM (Schott and McCreary, 2001).  In addition to 

ICW, minor water inputs from the Red Sea and Persian Gulf bring limited ventilation 

(RSW dissolved O2 110 µM, Grasshoff, 1969; PGW 155 µM, Wyrtki, 1971), however, 

the total amount of O2 transported by these water masses is negligible (< 10 % of water 

column O2 demand; Bange et al., 2005).  Together, the low rates of ventilation, high 

rates of primary productivity, and water currents act to maintain a general southwest - 

northeast gradient in O2, with the OMZ most intense (O2 < 1–5 µM) along the 

northeastern margin of the Arabian Sea (Bange et al., 2005). 

 

1.5.4.5. Denitrification 

As suboxic conditions intensify, facultative heterotrophs couple the oxidation of 

sinking POM to alternative terminal electron acceptors (§1.4).  The co-occurrence of O2 

depletion and a mid-water nitrite maximum within the Arabian Sea (Figure 1.9) 

indicates that bacterial denitrification becomes a dominant respiratory pathway within 

the OMZ water column.  Indeed, the contribution of the Arabian Sea to global nitrogen 

cycling is disproportionately large, with an estimated annual pelagic denitrification rate 

of 10-34 Tg N yr-1 (Mantoura et al., 1993; Naqvi et al., 1992; Bange et al., 2005). 

 

1.5.4.6. Manganese reduction 

The intensity of the OMZ is also reflected in the behaviour of the redox sensitive 

metals.  Dissolved Mn (Mn2+) displays a concentration maximum within the OMZ 

(Figure1.9).  The in situ microbially-mediated reduction of sinking Mn-oxyhydroxides 

(Mn3+/4+) is suggested to control this distribution (Saager et al., 1989); however, the 
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regional presence of secondary Mn2+ maxima suggests that an efflux of Mn2+ from 

underlying sediments and/or an injection of Mn-rich water from the Red Sea or Persian 

Gulf, may control the observed trends (Saager et al., 1989; Nair et al., 1999; Lewis and 

Luther, 2000).  To date, the exact mechanism(s) governing the formation the dissolved 

Arabian Sea Mn maxima(s) remain unresolved. 

 

Figure 1.9. Dissolved O2, NO3
-, NO2

-, Mn and Fe water column profiles from the Arabian Sea.  

The horizontal dashed lines indicate the relative position of the OMZ.  Oxygen, NO3
-, and NO2

- 

profiles are from the US JGOFS data set, station 18, cast 7 and 8 (19º16’N, 66º98’E & 19º00’N, 

66º99’E) (http://www1.whoi.edu).  Manganese and Fe profiles are from Saager et al. (1989), 

station 7 (21º16’N, 63º22’E). 

 

1.5.4.7. Iron reduction 

Limited information is available concerning the behaviour of Fe within the Arabian 

Sea pelagic environment.  Saager et al., (1989) and Moffett et al., (2007) report the 

presence of a dissolved Fe (Fe2+) concentration maximum within the OMZ (Figure 1.9), 

which is commensurate with the NO2
- maximum (§ 1.5.4.5).  Whether this reflects Fe 

remobilisation from sinking detritus, microbially-mediated reductive dissolution of 

sinking Fe oxyhydroxides (Fe3+), or an efflux of Fe2+ from OMZ impinged sediments, 

remains open to debate (e.g. Saager et al., 1989; Schenau et al., 2002b; Elrod et al., 

2004; Moffett et al., 2007).  However, resolution of this matter is of general interest as it 
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has been argued that Fe limitation may be important in the Arabian Sea during and after 

the SWM due to the limited input of aeolian Fe to the basin (Wiggert et al., 2006). 

 

1.5.4.8. Sulphate reduction 

An absence of pelagic sulphate reduction within the Arabian Sea has been 

highlighted by the lack of measurable free hydrogen sulphide throughout the water 

column (Therberge et al., 1997).  Whilst conditions within the OMZ are intensely 

suboxic/anoxic, it is argued that the high concentrations of nitrate ensure that pelagic 

denitrification is never completely exhausted, thus preventing the occurrence of 

sulphate reduction (Bange et al., 2005). 

 

1.5.5. Sediment biogeochemistry 

1.5.5.1. Sedimentation processes 

Sedimentation across the entire basin is directly or indirectly linked to the monsoons 

(Schnetger et al., 2000).  Monsoon controlled gradients in nutrient availability, primary 

production, OM export, and lithogenic inputs are all manifest in the region’s sediments.  

This is perhaps best demonstrated by the close correlation between measures of primary 

productivity and indicators of sediment OM quality, which show a general trend of 

increased sediment OM quality under eutrophic coastal waters, with a general offshore 

decline (Pfannküche et al., 2000; Witte, 2000).  Other parameters, such as bulk OM 

distribution (Pfannküche et al., 2000), estimates of benthic ecosystem function (e.g. 

Boetius and Lochte, 2000; Witte, 2000; Witte and Pfannküche, 2000; Sommer and 

Pfannküche, 2000; Luff et al., 2000), and rates of benthic nutrient regeneration (Grandel 

et al., 2000), also display a similar trend. 

The distribution of lithogenic material in Arabian Sea sediments, whilst dominated 

by regional trends in source geology, also reflects monsoonal controls.  A tongue of 
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smectite and palygorskite rich, illite poor sediments extend from the Somalia coast in a 

northwest direction, reflecting dust entrainment in the semi-arid regions of Africa 

during the SWM (Sirocko and Lange, 1991).  A narrow band of chlorite rich sediments 

with marginal quartz concentrations are found within the northern Arabian Sea, 

indicating dust source regions within the Arabian Peninsula and within Iran and 

Pakistan during the NEM (Kolla et al., 1976 and 1981; Sirocko and Lange, 1991; 

Sirocko et al., 2000).  High illite, chlorite, and smectite concentrations along eastern 

margins reflect fluvial inputs from the Indus, Tapti and Narmada rivers (von 

Stackelberg, 1972; Sirocko and Lange, 1991). 

 

1.5.5.2. Benthic communities and biomixing 

Basin-wide studies conducted at abyssal depths highlight that benthic communities 

are distributed according to OM availability.  Consequently, a general west-east, north-

south gradient is observed in faunal biomass and species diversity, which mirrors the 

distribution of primary productivity and sediment OM content (Boetius and Lochte, 

2000; Kurbjeweit et al., 2000; Sommer and Pfannküche, 2000; Witte, 2000).  The 

degree of biomixing at abyssal depths also correlates with sediment OM availability.  At 

organic-rich sites, large benthic communities composed of ophiuroids, holothurians, and 

natant decapods support limited deep sediment mixing.  Conversely, at organic-poor 

sites, smaller benthic communities predominantly composed of echiurans support 

extensive deep sediment mixing (Turnewitsch et al., 2000). 

Oxygen availability also has the potential to influence faunal distribution and 

biomixing in the Arabian Sea at points where the OMZ impinges the sediments.  Indeed, 

early studies on the Arabian margin highlighted an apparent absence of sediment fauna 

at OMZ affected sites (Sewell, 1934 a and b).  Further cross-margin studies conducted 

on the Oman and Somali margins have documented how benthic communities respond 
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to the strong O2 and OM gradients found in these locations.  Interestingly, on both 

margins, macrofauna distribution appears to be correlated to OM availability, indicating 

that O2 depletion in these regions is not severe enough to have a negative impact (Bak 

and Nieuwland, 1997; Duineveld et al., 1997; Cook et al., 2000; Levin et al., 2000).  

Indeed, on the Oman margin, macrofaunal biomass is greatest at OMZ sites (Levin et 

al., 2000), suggesting that food availability, and perhaps better preservation of OM 

under low O2 conditions are the key determinants of faunal population size (Cowie, 

2005).  Conversely, biomixing rates on the Oman margin appear to be affected by O2 

depletion, with mixed layer depths at OMZ sites significantly shallower than those at 

oxygenated sites (Smith et al., 2000).  Furthermore, the modal diameter of burrows and 

diversity of burrow types is also lower within the OMZ (Smith et al., 2000). 

The influence of O2 depletion on faunal communities and biomixing appears to be 

more defined on the Pakistan and Indian margins, where the OMZ is more intense.  

Whilst limited evidence is available detailing the region’s biota, surficial sediments 

within the core of the OMZ on these margins show no-to-limited evidence of 

bioturbation (Cowie et al., 1999), and sediments are often laminated due to the 

undistributed accumulation of seasonal export flux (von Stackelberg, 1972; Staubwasser 

and Sirocko, 2001).  At these locations, it is clear that O2 is persistently low enough to 

negatively influence macrofaunal abundance and bioturbation. 

 

1.5.5.3. Oxygen depletion and organic matter preservation 

Early geochemical characterisation of the Arabian Sea benthic environment 

highlighted the presence of organic rich sediments in areas impinged by the OMZ 

(Figure 1.10) (von Stackelberg, 1972; Kolla et al., 1981).  Further studies have clarified 

a general physical relation of relatively organic-rich sediments within the OMZ, 

surrounded by largely organic-poor, reworked deposits above and below the OMZ 
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(Paropkari, 1979; Pedersen et al., 1992; Paropkari et al., 1992 and 1993; Cowie et al., 

1999).  Similar findings have been documented in a range of other O2 deficient regions, 

and as a result, many authors have suggested that O2 availability is a key determinant 

governing OM preservation in marine sediments (e.g. DeMaison, 1991; Paropkari et al., 

1992 and 1993; Hartnett et al., 1998; van der Weijden et al., 1999).  In contrast, a 

variety of other studies have highlighted that there is no clear relationship between O2 

depletion and OM preservation, fuelling an ongoing debate over the factors controlling 

OM preservation.  Indeed, to date, numerous factors such as variable POM delivery, 

sorptive processes, hydrodynamic sorting, winnowing, and the extent and availability of 

anaerobic TEAPs, have been linked to OM preservation (e.g. Kristensen and Blackburn, 

1987; Pedersen et al, 1992; Canfield, 1993 a and b; Hedges and Keil, 1995; Thamdrup 

and Canfield, 1996; Cowie et al, 1999). 

 

1.5.5.4. Denitrification 

Whilst the dynamics of pelagic denitrification within the Arabian Sea are well 

constrained (see review by Bange et al, 2005), N-cycling within the sedimentary 

environment is hitherto uninvestigated.  No rates of sedimentary denitrification or 

estimates of its importance with regard to C-oxidation have been reported from the 

Oman, Somali, or Pakistan margins; however, Naik and Naqvi (2002) have determined 

denitrification rates on the Indian margin.  When extrapolated across the entire basin 

(0.4-3.5 Tg N yr-1), these rates were of modest significance compared to estimates of 

pelagic denitrification (Bange et al., 2005).  It must be stressed however, that due to the 

limited nature of the available data, firm conclusions as to the significance of 

sedimentary denitrification within the Arabian Sea, with regards to both the global N-

cycle, and sediment C-oxidation, cannot be drawn.  Indeed, in other low-O2 

environments, there is a growing recognition that sedimentary denitrification may 
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provide a key ‘missing link’ in the global N deficit (Hamersley and Howes, 2005), 

whilst also providing an important C-oxidation pathway (Harnett and Devol, 2003). 

  

Figure 1.10. A summary of the relationship between typical water-column dissolved oxygen 

concentrations and the types, colour, and geochemical and biological properties of surface 

sediments from the western continental margins off India and Pakistan (modified from von 

Stackelberg, 1972 and Cowie, 2005).  Schematic abundances of sediment components increase 

from left to right in each panel. 

 

1.5.5.6. Manganese cycling 

Whilst the distribution and cycling of Mn within the Arabian Sea water-column is 

comparatively well understood (§ 1.5.4.6), detailed information concerning Mn-cycling 

within the region’s sediments, and its importance with regard to C-oxidation, is lacking.  

Two studies have described surface-sediment Mn distribution throughout the basin, and 

both highlight an apparent scarcity of Mn at shelf and slope sites (Mn <0.01 wt %), with 

comparative enrichment at abyssal depths (Mn 0.1-0.5 wt %) (Shankar et al., 1987; 

Sirocko et al., 2000).  Schnetger et al., (2000) also found high concentrations of Mn at 

abyssal sites.  Passier and co-workers (1997), working on the Oman margin, found an 
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absence of reactive sedimentary Mn at a site within the OMZ.  In contrast, at a site 

located below the OMZ, Mn was enriched and actively cycled within the surface 

sediments (0-10 cm bsf).  More detailed studies conducted on the Pakistan and Indian 

margins have found a similar distribution patterns, with sediment Mn-cycling absent at 

low-O2 sites and enhanced at oxic sites (van der Weijden et al., 1999; Schenau et al., 

2002a; Laluraj and Nair, 2006).  Together, these studies potentially highlight that Mn 

only acts as an important C-oxidant at non-OMZ sites.  Furthermore, this distribution 

pattern may indicate that OMZ sediments do not provide an active Mn2+ source to 

overlying waters (e.g. Saager et al., 1989).  However, if such inferences are to be 

confirmed, detailed examination of Mn-cycling in a range of sediments exhibiting 

markedly different redox conditions, OM availability, and benthic community structure, 

in the Arabian Sea, is required. 

 

1.5.5.7. Iron cycling 

Basin wide studies have highlighted that Fe is enriched on the eastern margins of the 

Arabian Sea (India and Pakistan), and depleted off Yemen and Oman (Shankar, 1987; 

Sirocko et al., 2000).  This distribution pattern is thought to reflect a predominant 

fluvial input of Fe to the basin (Sirocko et al., 2000).  With regard to Fe-cycling within 

the region’s sediments, only limited information is available.  On the Indian margin, 

sediment Fe concentrations were found to be high (4-7 wt %) at oxic sites and low 

(< 3 wt %) at OMZ affected sites (Laluraj and Nair, 2006).  Passier et al., (1997), 

working on the Oman margin, found that bioavailable Fe3+ was cycled within the 

surface sediments (0-30 cm bsf) at an OMZ site, possibly indicating that a proportion of 

sediment C-oxidation is coupled to Fe3+ reduction under the prevailing suboxic 

conditions.  Bioavailable Fe3+ was also found at an oxygenated site on the same margin; 

however, reduction was not significant in the surface sediments (Passier et al., 1997).  
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Sediment Fe-cycling has also been examined at sites on the Pakistan margin (van der 

Weijden et al., 1999).  Here, bioavailable Fe3+ was found to be absent within OMZ 

sediments.  In contrast, at non-OMZ sites on the same margin, bioavailable Fe3+ was 

actively cycled within the surface sediments (van der Weijden et al., 1999).  This 

distribution pattern possibly indicates that pelagic Fe3+ reduction within the Pakistan 

margin OMZ may contribute to the Fe2+ maxima observed within the Arabian Sea (e.g. 

Sagger et al., 1989; Moffett et al., 2007).  Furthermore, the absence of bioavailable Fe3+ 

(and Mn4+/3+, see § 1.5.5.6) within OMZ sediments on this margin, and hence absence 

of anaerobic TEAPs, has been suggested to contribute to enhanced OM preservation 

(van der Weijden et al., 1999).  These lines of investigation are further explored in 

Chapter 3, where rates and mechanisms of Fe-cycling in sediments from the Pakistan 

margin are examined at a range of OMZ and non-OMZ sites. 

 

1.5.5.8. Sulphate reduction 

Enhanced levels of sulphate reduction commonly characterise sedimentary 

environments underlying upwelling regions (e.g. Fossing, 1990; Thamdrup and 

Canfield, 1996; Ferdelman et al., 1997; Hartnett and Devol, 2003, Böning et al., 2004; 

Böning et al., 2005).  Sulphate reduction has been documented in abyssal sediments 

within the Arabian Sea (Boetius et al, 2000), and in coastal sediments on the 

tectonically active Makran region (Schmaljohann et al., 2001).  However, whilst all of 

the known precursors for sulphate reduction exist within the OMZ (i.e. O2 depletion, 

high sediment OM content, and high porewater sulphate), indirect evidence suggests 

that sulphate reduction does not readily occur in contemporary OMZ sediments (Passier 

et al., 1997; van der Weijden et al., 1999; Schenau et al., 2002b).  Here, absences of 

porewater sulphate depletion, porewater sulphide, and sulphide minerals, typify the 

upper sediments (0-0.5 m bsf).  The causes for this unusual absence remain unclear, but 

have been linked to the sediment OM that is either inherently unreactive or made so via 
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sulphurisation reactions (Lückage et al., 1999; Lückage et al., 2002; Schenau et al., 

2002b), or an enhanced availability of other anaerobic C-oxidation pathways (i.e. 

denitrification or organotrophic metal reduction; van der Weijden et al., 1999). 

 

1.5.5.9. Authigenesis 

Several elements that are often used as palaeo-proxies show authigenic enrichment in 

contemporary Arabian Sea sediments.  On the Indian margin, high uranium (U) (~ 4-

8 µg g-1) concentrations typify sediments underlying the OMZ (Nath et al., 1997).  

When normalised to lithogenic values, authigenic U on this margin was found to 

account for 80-90 % of sediment U content, with the degree of enrichment positively 

correlated to sediment OM content.  Similar U distributions have been noted on the 

Oman margin of the Arabian Sea (Morford and Emerson, 1999) and in other OMZ 

environments (e.g. Klinkhammer and Palmer, 1991; Nameroff et al., 2002).  Other 

elements that show enrichment within the Arabian Sea OMZ include rhenium (Re), 

cadmium (Cd), molybdenum (Mo), and phosphorus (P).  Rhenium concentrations as 

high as 42 ng g-1 (~1000-fold higher than crustal abundance) have been documented at 

sites on the Pakistan margin (Crusius et al., 1996), whilst high concentrations of Mo and 

Cd have been reported for OMZ sites on the Oman margin (Morford and Emerson, 

1999).  In contrast, Mo was not found to be enriched at sites on the Pakistan margin 

(Crusius et al., 1996).  Phosphorus is also enriched at a variety of OMZ sites (Schenau 

et al, 2001; Babu and Nath, 2005).  Here, falling concentrations of porewater phosphate 

and increasing concentrations of Francolite (a Ca-phosphate mineral) are suggested to 

reflect active phosphogenesis in the region’s sediments (Schenau et al, 2001; Babu and 

Nath, 2005).  Barium (Ba), another important palaeo-proxy, also shows enrichment in 

the Arabian Sea sediments.  However, unlike U, Re, Cd, Mo, and P, Ba concentrations 

are low at suboxic sites, and instead increase in oxygenated sediments located below the 

OMZ (Schenau et al., 2001; Balakrishnan Nair et al, 2005). 
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