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Data Descriptor: Long-term, high
frequency in situ measurements
of intertidal mussel bed
temperatures using biomimetic
sensors
Brian Helmuth et al.#

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are
manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar
radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic
sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from
1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple
intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated
errors of ~2.0–2.5 °C, during daily �uctuations that often exceeded 15°–20 °C. Geographic patterns in
thermal stress based on biomimetic logger measurements were generally far more complex than
anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data
set provides an opportunity to link physiological measurements with spatially- and temporally-explicit �eld
observations of body temperature.

Design Type(s) observation design • time series design

Measurement Type(s) temperature of environmental material

Technology Type(s) biomimetic sensor

Factor Type(s) geographic location

Sample Characteristic(s)

intertidal zone • New South Wales • Queensland • State of Victoria •
Province of British Columbia • Coquimbo • England • Scotland • County
Clare • Galway • County Mayo • Baja California Peninsula • Auckland
Region • Canterbury Region • Coromandel Peninsula • Northland Region
• West Coast Region • State of California • Commonwealth of
Massachusetts • State of Oregon • State of South Carolina • State of
Washington • Eastern Cape Province • KwaZulu-Natal Province • Northern
Cape Province • Western Cape Province
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Background & Summary
Increasingly, researchers are emphasizing the need to consider physiological mechanisms when
forecasting the effects of global climate change on organisms and ecosystems1–3. Speci�cally, studies have
highlighted a need to understand how environmental conditions vary in space and time4 in addition to
the details of how organisms respond to those variables5–8 as a means of evaluating inter- and
intraspeci�c vulnerability (‘winners and losers’)9,10, the probability of invasion by non-native species11,12,
changes in patterns of abundance and distribution13,14, and declines in biodiversity15 and ecosystem
services16.

Notably, there is concern that simple correlations between environmental measurements (such as air,
land surface and sea surface temperature) and species distributions may fail under the novel conditions
presented by climate change17, highlighting the need to extrapolate from experiments conducted under
controlled conditions to projections of future climate impacts3,18. There has also been an emphasis on
considering the cumulative impacts of physiological stress14,19 on patterns of growth20 and
reproduction21 rather than focusing solely on lethal extremes19.

However, making connections between the lab and �eld can be far more complex than is often
assumed4. For example, a number of theoretical and empirical studies have explored the often over-riding
importance of spatial and temporal variability in environmental parameters9,22, which is not captured
when experiments are based only on monthly, yearly or decadal averages23,24. Moreover, while large-scale
measurements of environmental conditions made by satellites, buoys, and weather stations provide
critical insights into rates of environmental change on large scales25, at a proximal level these habitat-level
measurements may not always serve as good indicators of physiological stress4,26. In fact, the only
‘environmental signals’ that matter to an organism are those that the organism actually experiences27.
Making connections across scales that span from organismal to biogeographic is no easy matter, but is
crucial if we are to effectively forecast ongoing responses to environmental change28,29.

One of the most obvious examples of the complex ways climate de�nes weather patterns, and weather
then drives niche-level organismal responses30, is how climate change is ultimately re�ected as changes in
plant and animal body temperatures. The vast majority of organisms on Earth are ectothermic
poikilotherms, so that their body temperatures and thus levels of physiological performance change with
ambient environmental conditions. For terrestrial and intertidal ectotherms (and even some shallow-
water corals31), body temperatures are driven by multiple environmental parameters, most notably solar
radiation, air and water temperatures and wind speed32–34. The structure of an organism’s microhabitat,
and especially its exposure to direct solar radiation, can have enormous implications for its body
temperature, such that animal temperatures are only close to air temperature in fully shaded
microhabitats26,35. While many animals can behaviourally select among these microhabitats as a means of
thermoregulation36, others are functionally sessile and thus have body temperatures determined by very
local topography. To further complicate matters, the size, morphology and colour of organisms, as well as
their ability to form aggregations37,38 can affect heat exchange so that two organisms exposed to identical
microclimatic conditions can have very different body temperatures39,40. To contend with these issues,
multiple authors have developed heat budget models that factor-in the characteristics of the
organism26,33,41 to predict body temperatures using weather data as inputs.

An alternative approach—and one that is required to validate biophysical (heat budget) models—is to
use in situ sensors speci�cally tailored to record temperatures relevant to the organism being studied,
either directly or through the use of biomimics42. Biomimetic sensors (biomimics) match the thermal
characteristics (size, morphology, colour, material properties) of living organisms43,44, serving as an
effective tool for recording organismal body temperature in their natural environment45,46. Here we
report on a long-term data set of temperatures recorded by biomimetic loggers thermally matched to
bivalves (mussels) in the intertidal zone, one of the most physiologically harsh habitats on Earth. Over the
course of a 24-hr period, intertidal animals and algae are alternately exposed to water at high tide and to
air, wind and solar radiation at low tide. Thus, their temperature not only depends on local weather
conditions but also on the timing and duration of low tide47. We have previously shown, for example,
that consistent differences in the timing of low tide relative to high levels of solar radiation create
geographic mosaics in low tide temperature, where mussel body temperatures at higher latitude sites can
be much higher than those at low latitude sites40,47,48. As ecosystem engineers49 mussels in particular
have a large in�uence on the stability and biodiversity of the intertidal community and so quantifying
their survival and physiological performance has signi�cant ecosystem-level consequences50,51.

Methods
We used biomimetic loggers to estimate temperatures of the mussels Mytilus californianus (West coast of
North America), M. edulis and Geukensia demissa (East coast of North America), M. chilensis (Chile),
Perna perna (South Africa) and P. canaliculus (New Zealand). We also deployed unmodi�ed commercial
loggers directly on rock surfaces at multiple sites (Australia, Ireland, Mexico, Scotland, U.K., U.S.) that
recorded temperatures relevant to barnacles, newly settled mussels and other organisms that are
suf�ciently small that their temperatures mirror those of the underlying rock52.

Each biomimetic sensor (‘Robomussel’; Fig. 1) consisted of either a commercially-available TidbiT
logger (TB132-20+50 and UTB1-001; Onset Computer Corporation, Pocasset, MA) encased in black-
coloured polyester resin (Evercoat Premium Marine Resin, Illinois Tool Works, Inc.), or a real mussel
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shell �lled with silicone and encasing a Tidbit or a Thermochron iButton logger (DS1922L-F5; Maxim
Integrated, San Jose, California). Both instruments are factory calibrated: Tidbit loggers have a reported
accuracy of 0.21 °C and a stability (drift) of 0.1 °C per year (http://www.onsetcomp.com/products/data-
loggers/utbi-001) and ibuttons have an accuracy of 0.5 °C (https://datasheets.maximintegrated.com/en/
ds/DS1922L-DS1922T.pdf); the drift is reported by the manufacturer to be negligible, especially when
compared to the ~2 °C accuracy of the biomimic loggers (see Technical Validation below). Because of loss
due to waves, each logger was typically used for only 2–3 years. Details on logger designs and �eld tests
are described in detail in previous publications44,45,53. In brief, logger thermal characteristics were
calculated using empirical measurements of shell and tissue mass against length from adult Mytilus
californianus collected on the west coast of North America. In addition to morphology (which determines
convective heat �ux) and colour (which affects solar heat load), the primary consideration is the
maintenance of thermal inertia (the tendency of an object to resist temperature change as a function of
external forcing). Mass/length relationships were combined with measurements of the speci�c heat
capacity of shell and tissue to estimate total thermal inertia as a function of size45. This was then
compared to the thermal mass of polyester resin mussels of different lengths. The point where the two
curves intersect is ~ 8 cm shell length; this was the size of the epoxy loggers. Silicone molds were cast from
a representative 8 cm mussel, and were in turn used to pour two-part polyester resin (Evercoat) around
the commercial TidbiT logger.

In some cases, iButton loggers were encased in ~8 cm mussel shells �lled with silicone, which has a
mass*speci�c heat similar to that of water. Comparisons of these instruments against adjacent mussels
showed that silicone-�lled shells recorded temperatures within ~1 °C of living animals54. However,
these loggers were considerably less durable and required more frequent maintenance (~ bimonthly)
than epoxy mussels (every 6–10 months), and so were used only infrequently at most sites.
At some sites where the targeted mussel species is smaller (e.g., M. edulis in the Gulf of Maine), we
used 4 cm mussel shells. Loggers of differing size were never used at the same site, and are
distinguished from one another in the database. Nevertheless, any direct comparison between data
collected by loggers of different sizes should be made with caution, as size can affect mussel
temperature by several degrees55.

Robomussels were deployed primarily on hard rock substrate, in growth position (posterior upward)
in intact beds using Z-spar splash zone epoxy putty (Fig. 1). Care was taken to ensure that the logger was
completely surrounded by other mussels, as tests showed that loggers deployed as solitary individuals
tended to yield anomalously high readings. On the east coast of North America, loggers were also
deployed at soft sediment (marsh) sites in mud substrate by attaching the loggers to dowel rod.

Deployment began in 1998 at the Hopkins Marine Station in Paci�c Grove, California54, and was
expanded to other sites beginning in 2000 (Table 1 (available online only), Fig. 2). Total deployment time
varied by location, ranging from less than a year to almost 18 years (average deployment time of 4 years).
The number of loggers deployed and lost due to wave dislodgement also varied at each site, but a
standard protocol was to deploy at least 3 loggers in the middle of mussel beds on horizontal, unshaded
surfaces. At most sites, loggers were deployed at the upper edge of the mussel bed (‘upper’), half way
between the upper and mid levels (‘upper mid’), mid level (‘mid’), half way between the mid and lower
edge of the bed (‘lower mid’) and at the bottom of the mussel bed (‘lower’).

Figure 1. Epoxy ‘robomussel’ biomimetic logger (~8 cm in length) deployed in growth position in a Mytilus
californianus bed. Loggers were designed to match the thermal characteristics of bivalves and were typically
made of epoxy (as shown) but real shells �lled with silicone were also used, especially for smaller (4 cm)
mussels.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 3

https://datasheets.maximintegrated.com/en/ds/DS1922L-DS1922T.pdf
https://datasheets.maximintegrated.com/en/ds/DS1922L-DS1922T.pdf


Loggers were programmed to record at intervals of 10–30 min and left in the �eld for periods up to
9 months before they were removed for downloading, and replaced with another logger. Every effort
was made to place this new logger in precisely the same position in the bed as the logger being
retrieved. All logger clock times were set to GMT. In the U.S., the absolute tidal elevation
(height above chart datum) was measured with a Trimble R8 GNSS GPS system capable of sub-cm
resolution. Temperature records were also used to record wave swash by comparing sudden drops in
temperature (an indication of �rst wave splash following exposure at low tide) against predicted tidal
elevations. The measurements of ‘Effective Shore Level’ can subsequently be compared against buoy
records of signi�cant wave height in order to estimate wave splash as a function of nearshore wave
height at each site56,57.

Code availability
Code written in R58 was used to trim data recorded by each logger before and after deployment.
A separate software program (SiteParser) is also available on the Northeastern website to determine the
incidence of wave splash56,57. This is accomplished by comparing rapid (user-de�ned) drops in
temperature, indicative of the return of the tide, against predicted (Xtide software, www.�aterco.com/
xtide) or measured (tidesandcurrents.noaa.gov) tide height for each site. By comparing these
measurements against measured logger tidal elevations, it is possible to calculate the ‘effective shore
level’ of a logger as a function of nearshore wave height56. This also provides a method of dividing logger
temperatures into aerial and submerged records. Notably, the choice of temperature drop determines
both the accuracy of the division between aerial and submerged records, as well as the total amount of
data available. Speci�cally, the choice of a larger temperature drop tends to increase certainty as to
temperature divisions, but can restrict the amount of data to days when such drops are observed. For this

Figure 2. Map of logger deployment sites. Colors indicate approximate length of deployment, which ranged
from one or two seasons to almost 18 years. Insets show (a) West and (b) East coasts of the United States and
(c) New Zealand.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 4

www.flaterco.com/xtide
www.flaterco.com/xtide


reason, the database provides data that have not been analyzed in this manner, but instead provides tools

for the user to do so. A link to the open source SiteParser software program is provided on the
Northeastern database website, along with links to all metadata including (when available) logger
elevations.

Data Records
Data from all loggers are archived in two databases. The �rst is a searchable database maintained by
Northeastern University (www.northeastern.edu/helmuthlab/Research/Database.html) and provides
unrestricted access to data as well as to associated links such as the SiteParser software described
above. Metadata for each microsite are included as a downloadable spreadsheet, which includes, for each
site: Country, Region, Site name, and GPS coordinates (Table 1 (available online only)). The metadata
�le also includes information speci�c to each microsite, including: Biomimic logger type (unmodi�ed
ibutton, unmodi�ed TidBit, epoxy [8 cm] mussel logger, shell (silicone-�lled) mussel logger [4 or 8 cm
length]), Substrate (rocky, muddy, tidepool), Tidal elevation zone (low, lower mid, mid, upper mid, or
upper), Wave exposure (protected or exposed), and Start and end dates (Table 2). At the Northeastern
website, data can be viewed and downloaded using a series of drop-down menus (Fig. 3). Given the range
of selections, the database provides the range of dates over which data meeting those criteria are available
(this information is also included in the metadata �le). Data from each logger can be downloaded as raw
data, as well as daily, monthly or annual maxima, minima and averages. Note that data include both
aerial and submerged temperatures, but raw data can be parsed using the software provided. In instances

Figure 3. Northeastern database showing dropdown menus. Users select Biomimic type (e.g., 8 cm epoxy
logger); Country and Region (e.g., state); Site name; Intertidal zone (e.g., upper, mid, lower); Substrate type;
Wave exposure, and Data statistic (raw, mean, maximum, or minimum over ranges of daily, monthly or
yearly).

Parameter Description Unit

Logger type Type of biomimic or logger Text

Site Code 6-character site identi�cation code (1st 2-characters: country; 2nd 2-characters: state; 3rd 2-characters: site) Text

Site Name Name of the site Text

Region Name of the region or jurisdiction Text

Country Name of the country Text

Latitude Latitude of the site Decimal degree

Longitude Longitude of the site Decimal degree

Zone Intertidal zone (low, lower mid, mid, upper-mid, upper) Text

Substrate Additional characteristics: muddy intertidal, rocky intertidal Text

Wave Exposure Wave exposure of logger (exposed or protected) Text

Table 2. Data descriptors.
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where multiple microsites meet the selected criteria, the program takes the average at each time point
from the maximum number of loggers available before calculating summary statistics. Data from all
microsites can be downloaded as raw data to avoid this averaging procedure.

Raw data in text �le format as well as associated metadata are also archived in a public repository
(Data Citation 1). Files are organized in to a series of subfolders organized by Country, Region and Site
(Table 1 (available online only)). Metadata identical to those available at the Northeastern site are also
included as a downloadable �le. Each data �le contains information speci�c to the microsite in its header,
and follows a 10 letter/6 number naming convention as follows: BM (indicating biomimetic logger
database); Logger type (RM for mussel loggers [‘Robomussels’] or RB for unmodi�ed loggers
[‘Robobarnacles’]); 6 letter site code (Table 1 (available online only); Country, Region, Site); two-digit
microsite ID and four digit Year.

Technical Validation
Comparisons of logger temperatures against tissue temperatures of adjacent live mussels made using
thermocouples are presented in four publications44,45,54,59. The �rst compared temperatures recorded by
a thermistor with the tip embedded in a silicone-�lled shell against point measurements made from
adjacent mussels in the �eld in Paci�c Grove, California and found an average difference of ~0.75 °
C (ref. 54). The second involved a more comprehensive set of tests of epoxy (polyester) loggers in both
the �eld and in a wind tunnel �tted with a heat lamp45. In the laboratory experiments, the average
difference between loggers and live mussels in arti�cial beds was ~2.2 °C (ref. 45). Notably, the average
difference between live mussels and unmodi�ed loggers (TidbiTs) in the same experiment was 14.6 °C.
Field-tests yielded similar results, with an average error of 2.7 °C between robomussels and live mussels45.
A follow-up study with additional laboratory tests over a wider range of temperatures (10–50 °C)
reported a Root Mean Square Error (RMSE) of 3.84 °C with a correlation coef�cient of 0.89 between
loggers and live mussels, with a bias of 0.8 °C where loggers tended to overestimate temperatures slightly
under extreme conditions44. Finally, iButton loggers placed in the middle of silicone-�lled Geukensia
demissa shells were tested in a wind tunnel in arti�cial beds under a range of wind speeds; results showed
average differences of ~1.0–1.5 °C (ref. 59).

Usage Notes
Portions of the logger data presented here have been used in multiple �eld studies, and have provided
context for laboratory studies. At small scales, biomimetic loggers (both loggers that we deployed as well
as similar loggers made by other researchers) have been used to record differences in temperature among
microhabitats (shaded and unshaded surfaces) and tidal elevations (Fig. 4) and the results compared to
measurements of biochemical indicators of stress such as heat shock proteins54,60, gene expression61,
reproductive condition62, and to the �ne-scale distribution of native and non-native species63. At
biogeographic scales, robomussels have been used to document thermal mosaics across large latitudinal
gradients40,48 (Fig. 5) and the results related to patterns of mortality64, physiological stress65–67 and
growth68,69, as well as interspeci�c differences in physiological stress39 and geographic distribution70.

Figure 4. Monthly average daily maximum temperature at low, mid and upper intertidal elevations at a
relatively wave-protected bench in Boiler Bay, Oregon.
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Measurements from mussel biomimetics have been used to test heat budget models that estimate animal
temperature using data from weather stations and satellites71–73. Robomussels have also been used as part
of controlled laboratory experiments that strive to replicate realistic �eld conditions37,74. Finally
robomussel data can be used to estimate wave splash and water temperature56,57, although in this regard
they do not present a major advantage over unmodi�ed loggers.

References
1. Rapacciuolo, G. et al. Beyond a warming �ngerprint: individualistic biogeographic responses to heterogeneous climate change in

California. Global Change Biol. 20, 2841–2855 (2014).
2. Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological

implications. Func. Ecol 18, 159–167 (2004).
3. Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Nature 322, 690–692 (2008).
4. Kearney, M. Habitat, environment and niche: what are we modelling? Oikos 115, 186–191 (2006).
5. Jansen, J. M. et al. Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp.

and Macoma balthica populations. Oecologia 154, 23–34 (2007).
6. Kroeker, K. J. et al. The role of temperature in determining species’ vulnerability to ocean acidi�cation: A case study using Mytilus

galloprovincialis. PLoS ONE 9, E100353 (2014).
7. Monaco, C. J. & Helmuth, B. Tipping points, thresholds, and the keystone role of physiology in marine climate change research.

Adv. Mar. Biol. 60, 123–160 (2011).
8. Queirós, A. M. et al. Scaling up experimental ocean acidi�cation and warming research: from individuals to the ecosystem. Global

Change Biol. 21, 130–143 (2015).
9. Seebacher, F. & Franklin, C. E. Determining environmental causes of biological effects: the need for a mechanistic physiological

dimension in conservation biology. Philosophical Transactions of the Royal Society B 367, 1607–1614 (2012).
10. Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine

‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
11. Kelley, A. L. The role thermal physiology plays in species invasion. Conservation Physiology 2, cou045 (2014).

Figure 5. Monthly average daily maximum temperature (for the hottest month of each year at each site) at mid
intertidal elevations along the west coast of the United States (2007–2014).

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 7



12. Lockwood, B. L. & Somero, G. N. Invasive and native blue mussels (genus Mytilus) on the California coast: The role of physiology
in a biological invasion. J. Exp. Mar. Biol. Ecol. 400, 167–174 (2011).

13. Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular
hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A 132, 739–761 (2002).

14. Woodin, S. A., Hilbish, T. J., Helmuth, B., Jones, S. J. & Wethey, D. S. Climate change, species distribution models, and
physiological performance metrics: predicting when biogeographic models are likely to fail. Ecology and Evolution 3,
3334–3346 (2013).

15. Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp.
Mar. Biol. Ecol 400, 7–16 (2011).

16. Mumby, P. J. et al. Revisiting climate thresholds and ecosystem collapse. Frontiers in Ecology and the Environment 9,
94–96 (2011).

17. Brown, C. J. et al. Quantitative approaches in climate change ecology. Global Change Biol 17, 3697–3713 (2011).
18. Somero, G. N. The physiology of global change: Linking patterns to mechanisms. Annual Review of Marine Science 4,

39–61 (2012).
19. Wethey, D. S. et al. Response of intertidal populations to climate: Effects of extreme events versus long term change. J. Exp. Mar.

Biol. Ecol. 400, 132–144 (2011).
20. Thomas, Y. et al. Modelling spatio-temporal variability of Mytilus edulis (L.) by forcing a dynamic energy budget model with

satellite-derived environmental data. J. Sea Res. 66, 308–317 (2011).
21. Sarà, G. et al. Growth and reproductive simulation of candidate shell�sh species at �sh cages in the Southern

Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture 324,
259–266 (2012).

22. Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal
Society B 281, 20132612 (2014).

23. Helmuth, B. et al. Beyond long-term averages: Making biological sense of a rapidly changing world. Climate Change Responses 1,
10–20 (2014).

24. Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: Modeling time-dependent effects of thermal stress on
ectotherm growth rates. Amer. Nat 187, 283–294 (2016).

25. Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat.
Commun 3, 704 (2012).

26. Kearney, M. R., Isaac, A. P. & Porter, W. P. microclim: Global estimates of hourly microclimate based on long-term monthly
climate averages. Scienti� c Data 1, 140006 (2014).

27. Helmuth, B. et al. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. J. Exp.
Biol. 213, 995–1003 (2010).

28. Pawar, S., Dell, A. I. & Savage, V. M. in Aquatic Functional Biodiversity: An ecological and evolutionary perspective
(eds Belgrano, A., Woodward, G. & Jacob, U.) 3–36 (2015).

29. Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosystem Health and Sustainability 1,
17 (2015).

30. Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol.
Letters 12, 334–350 (2009).

31. Jimenez, I. M., Kühl, M., Larkum, A. W. D. & Ralph, P. J. Heat budget and thermal microenvironment of shallow-water corals: Do
massive corals get warmer than branching corals? Limnol. Oceanogr. 53, 1548–1561 (2008).

32. Marshall, D. J., McQuaid, C. D. & Williams, G. A. Non-climatic thermal adaptation: implications for species' responses to climate
warming. Biology Letters 6, 669–673 (2010).

33. Mislan, K. A. S. & Wethey, D. S. Gridded meteorological data as a resource for mechanistic macroecology in coastal
environments. Ecol. Appl. 21, 2678–2690 (2011).

34. Mislan, K. A. S., Helmuth, B. & Wethey, D. S. Geographical variation in climatic sensitivity of intertidal mussel zonation. Global
Ecology and Biogeography 23, 744–756 (2014).

35. Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Global Change Biol. 19,
2932–2939 (2013).

36. Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc.
Nat. Acad. Sci 111, 5610–5615 (2014).

37. Nicastro, K. R., Zardi, G. I., McQuaid, C. D., Pearson, G. A. & Serrão, E. A. Love thy neighbour: Group properties of gaping
behaviour in mussel aggregations. PLoS ONE 7, e47382 (2012).

38. Miller, L. P. & Denny, M. W. Importance of behavior and morphological traits for controlling body temperature in
littorinid snails. Biol. Bull. 220, 209–223 (2011).

39. Broitman, B. R., Szathmary, P. L., Mislan, K. A. S., Blanchette, C. A. & Helmuth, B. Predator-prey interactions under climate
change: the importance of habitat vs body temperature. Oikos 118, 219–224 (2009).

40. Helmuth, B. S. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).
41. Kearney, M., Simpson, S. J., Raubenheimer, D. & Helmuth, B. Modelling the ecological niche from functional traits. Philosophical

Transactions of the Royal Society B 365, 3469–3483 (2010).
42. Dzialowski, E. M. Use of operative temperature and standard operative temperature models in thermal biology. J. Thermal Biol.

30, 317–334 (2005).
43. Lathlean, J. A., Ayre, D. J., Coleman, R. A. & Minchinton, T. E. Using biomimetic loggers to measure interspeci�c and

microhabitat variation in body temperatures of rocky intertidal invertebrates. Mar. Freshwater Res. 66, 86–94 (2014).
44. Lima, F. P. et al. in Advances in Biomimetics, 499–522 (INTECH publishing, 2011).
45. Fitzhenry, T., Halpin, P. M. & Helmuth, B. Testing the effects of wave exposure, site, and behavior on intertidal mussel body

temperatures: Applications and limits of temperature logger design. Mar. Biol. 145, 339–349 (2004).
46. Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change.

Scienti� c Reports 5, 12930 (2015).
47. Mislan, K. A. S., Wethey, D. S. & Helmuth, B. When to worry about the weather: role of tidal cycle in determining patterns of risk

in intertidal ecosystems. Global Change Biol. 15, 3056–3065 (2009).
48. Helmuth, B. et al. Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol. Monogr. 76,

461–479 (2006).
49. Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in

aquatic habitats. Oikos 101, 79–90 (2003).
50. Smith, J. R., Fong, P. & Ambrose, R. F. Dramatic declines in mussel bed community diversity: response to climate change? Ecology

87, 1153–1161 (2006).
51. Paine, R. T. Intertidal community structure: Experimental studies on the relationship between a dominant competitor and its

principal predator. Oecologia 15, 93–120 (1974).

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 8



52. Wethey, D. S. Biogeography, competition, and microclimate: the barnacle Chthamalus fragilis in New England. Int. Comp. Biol
42, 872–880 (2002).

53. Harley, C. D. G. & Helmuth, B. S. T. Spatial variation in invertebrate upper limits, thermal stress, and effective tidal height. Amer.
Zool. 41, 1466 (2001).

54. Helmuth, B. S. T. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky
intertidal zone. Biol. Bull. 201, 374–384 (2001).

55. Helmuth, B. S. T. Intertidal mussel microclimates: Predicting the body temperature of a sessile invertebrate. Ecol. Monogr. 68,
51–74 (1998).

56. Gilman, S. E. et al. Evaluation of effective shore level as a method of characterizing intertidal wave exposure regimes. Limnology
and Oceanography: Methods 4, 448–457 (2006).

57. Harley, C. D. G. & Helmuth, B. S. T. Local and regional scale effects of wave exposure, thermal stress, and absolute vs. effective
shore level on patterns of intertidal zonation. Limnol. Oceanogr. 48, 1498–1508 (2003).

58. R Core Development Team. A language and environment for statistical computing. R Foundation for Statistical Computing, (2016).
59. Jost, J. & Helmuth, B. Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic ribbed

Mussel, and their effects on mussel mortality. Biol. Bull. 213, 141–151 (2007).
60. Petes, L. E., Mouchka, M. E., Milston-Clements, R. H., Momoda, T. S. & Menge, B. A. Effects of environmental stress on intertidal

mussels and their sea star predators. Oecologia 156, 671–680 (2008).
61. Gracey, A. Y. et al. Rhythms of gene expression in a �uctuating intertidal environment. Current Biology 18, 1–7 (2008).
62. Petes, L. E., Menge, B. A. & Harris, A. L. Intertidal mussels exhibit energetic trade-offs between reproduction and stress resistance.

Ecol. Monogr. 78, 387–402 (2008).
63. Schneider, K. R. & Helmuth, B. Spatial variability in habitat temperature may drive patterns of selection between an invasive and

native mussel species. Mar. Ecol. Prog. Ser. 339, 157–167 (2007).
64. Zardi, G., Nicastro, K., McQuaid, C. D., Hancke, L. & Helmuth, B. The combination of selection and dispersal helps explain

genetic structure in intertidal mussels. Oecologia 165, 947–958 (2011).
65. Place, S. P., O'Donnell, M. J. & Hofmann, G. E. Gene expression in the intertidal mussel Mytilus californianus: physiological

response to environmental factors on a biogeographic scale. Mar. Ecol. Prog. Ser. 356, 1–14 (2008).
66. Logan, C. A., Kost, L. E. & Somero, G. N. Latitudinal differences in Mytilus californianus thermal physiology. Mar. Ecol. Prog. Ser.

450, 93–105 (2012).
67. Tagliarolo, M. & McQuaid, C. D. Field measurements indicate unexpected, serious underestimation of mussel heart rates and

thermal tolerance by laboratory studies. PLoS ONE 11, e0146341 (2016).
68. Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and species interactions.

Ecol. Letters 19, 771–779 (2016).
69. Blanchette, C. A., Helmuth, B. & Gaines, S. D. Spatial patterns of growth in the mussel, Mytilus californianus, across a major

oceanographic and biogeographic boundary at Point Conception, California, USA. J. Exp. Mar. Biol. Ecol 340, 126–148 (2007).
70. Tagliarolo, M. & McQuaid, C. D. Sub-lethal and sub-speci�c temperature effects are better predictors of mussel distribution than

thermal tolerance. Mar. Ecol. Prog. Ser. 535, 145–159 (2015).
71. Gilman, S. E., Wethey, D. S. & Helmuth, B. Variation in the sensitivity of organismal body temperature to climate change over

local and geographic scales. Proc. Nat. Acad. Sci 103, 9560–9565 (2006).
72. Helmuth, B. et al. Hidden signals of climate change in intertidal ecosystems: what (not) to expect when you are expecting. J. Exp.

Mar. Biol. Ecol 400, 191–199 (2011).
73. Wethey, D. S., Brin, L. D., Helmuth, B. & Mislan, K. A. S. Predicting intertidal organism temperatures with modi�ed land

surface models. Ecological Modelling 222, 3568–3576 (2011).
74. Schneider, K. R. Heat stress in the intertidal: comparing survival and growth of an invasive and native mussel under a variety of

thermal conditions. Biol. Bull. 215, 253–264 (2008).

Data Citation
1. Helmuth, B. et al. Dryad http://dx.doi.org/10.5061/dryad.6n8kf (2016).

Acknowledgements
The collection of robomussel data has primarily been supported by grants from NSF (IBN-9985878,
OCE-0323364, OCE-0926581 and IBN- 1557868); NASA (NNG04GE43G, NNX07AF20G,
NNX11AP77G), NOAA (NA04NOS4780264), the National Geographic Society to B.H., N.S.F.
IBN-1557868 to B.H. and M.Z., and the David and Lucile Packard Foundation to PISCO, the
Partnership for Interdisciplinary Studies of Coastal Oceans (B.M., G.E.H., C.B.) and by the Chilean
Ministry of Economics (MINECON NC120086) to B.B. This work includes research supported by the
South African Research Chairs Initiative of the Department of Science and Technology and the National
Research Foundation (C.D.M.). This is publication number 468 of the Partnership for Interdisciplinary
Studies of Coastal Oceans (PISCO) and 343 of the Marine Science Center, Northeastern University.
Numerous people helped to collect loggers over the last 18 years, and we are very grateful for their help:
Tameka Breland, Susan Bolte, Nick Burnett, Cari Cardoni, Ryan Craig, Sean Craig, Colette Dryden, Tara
Fitzhenry, Kristi Gardner, Shawn Gerrity, Chris Haas, Steven Hawkins, Maxine Henry, Lindsay Hunter,
Scott Johnson, Nicole Kish, Ruth Milston-Clements, Gayle Murphy, Tom O’Keefe, Susanne Pender,
Cathy P�ster, Camryn Pennington, Brittany Poirson, Sylvain Pincebourde, Eric Sanford and Morgan
Timmerman-Helmuth. The �ndings and conclusions in this article are those of the authors and do not
necessarily represent the views of any of the authors’ institutions or agencies.

Author Contributions
Helmuth led the study for the entire duration of the record. Logistics of deployment, retrieval and data
management were, at various times, overseen by Choi, Matzelle, Szathmary, Gilman, Mislan, Yamane,
Tockstein and Strickland. All other authors managed instrument deployment and retrieval at �eld sites:
Massachusetts (Choi, Torossian, Morello); Scotland (Burrows); Ireland (Power, Gosling); U.K. (Hilbish,
Mieszkowska); British Columbia and Washington (Nishizaki, Carrington, Harley); Oregon (Menge,
Petes, Foley, Johnson, Poole, Noble, Richmond, Robart, Robinson, Sapp); California (Denny, Mach,

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 9

http://dx.doi.org/10.5061/dryad.6n8kf


Miller, O0Donnell, Sones, Hilbish, Harley, Hofmann, Zippay, Blanchette, Macfarlan); Baja California
(Carpizo-Ituarte, Ruttenberg, Peña Mejía); Chile (Broitman); New Zealand (Mislan, Petes, Ross, Menge)
and South Africa (McQuaid, Lathlean, Monaco, Nicastro, Zardi). Helmuth led the writing of the
manuscript and all authors contributed to editing.

Additional Information
Table 1 is only available in the online version of this paper.
Competing � nancial interests: The authors declare no competing �nancial interests.
How to cite this article: Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal
mussel bed temperatures using biomimetic sensors. Sci. Data 3:160087 doi: 10.1038/sdata.2016.87 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The
images or other third party material in this article are included in the article’s Creative

Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released
under the CC0 waiver to maximize reuse.

© The Author(s) 2016

Brian Helmuth1, Francis Choi1, Allison Matzelle1, Jessica L. Torossian1, Scott L. Morello2,
K.A.S. Mislan3, Lauren Yamane4, Denise Strickland5,y, P. Lauren Szathmary5,y,
Sarah E. Gilman6, Alyson Tockstein5,y, Thomas J. Hilbish5, Michael T. Burrows7,
Anne Marie Power8, Elizabeth Gosling9, Nova Mieszkowska10,y, Christopher D.G. Harley11,
Michael Nishizaki12,y, Emily Carrington12, Bruce Menge13, Laura Petes13,y,
Melissa M. Foley13,y, Angela Johnson13, Megan Poole13, Mae M. Noble13,y,
Erin L. Richmond13,y, Matt Robart13,y, Jonathan Robinson13, Jerod Sapp13, Jackie Sones14,
Bernardo R. Broitman15, Mark W. Denny16, Katharine J. Mach16,y, Luke P. Miller16,y,
Michael O’Donnell16,y, Philip Ross17, Gretchen E. Hofmann18, Mackenzie Zippay18,y,
Carol Blanchette18,y, J.A. Macfarlan18,y, Eugenio Carpizo-Ituarte19, Benjamin Ruttenberg19,y,
Carlos E. Peña Mejía19,y, Christopher D. McQuaid20, Justin Lathlean20, Cristián J. Monaco20,
Katy R. Nicastro20,y & Gerardo Zardi20

1Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, Massachusetts 01908, USA.
2The Downeast Institute, Beals, Maine 04611, USA. 3University of Washington, School of Oceanography, Seattle,
Washington 98195, USA. 4University of California, Davis, Department of Wildlife, Fish, and Conservation Biology,
Davis, California 95616, USA. 5University of South Carolina, Department of Biological Sciences, Columbia,
South Carolina 29208, USA. 6W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges,
Claremont, California 91711, USA. 7Scottish Association for Marine Science, Oban, Argyll PA37 1QA, Scotland.
8Anne Marie Power, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland.
9School of Life Sciences, Galway-Mayo Institute of Technology, Galway H91 T8NW, Ireland. 10Marine Biological
Association of the United Kingdom, Plymouth, Devon PL1 2PB, UK. 11University of British Columbia, Department
of Zoology and Biodiversity Research Centre, Vancouver, British Columbia, Canada V6T1Z4. 12University of
Washington, Department of Biology, Seattle, Washington 98195, USA. 13Oregon State University, Department of
Integrative Biology, Corvallis, Oregon 97331, USA. 14University of California, Davis, Bodega Marine Reserve,
Bodega Bay, California 94923, USA. 15Centro de Estudios Avanzados en Zonas Aridas, Coquimbo 1780000, Chile.
16Stanford University, Hopkins Marine Station, Paci� c Grove, California 93950, USA. 17University of Waikato,
Environmental Research Institute, Tauranga 3110, New Zealand. 18University of California Santa Barbara, Marine
Science Institute, Santa Barbara, California 93106, USA. 19Universidad Autónoma de Baja California, Instituto de
Investigaciones Oceanológicas, Ensenada, Baja California 22860, Mexico. 20Rhodes University, Department of
Zoology and Entomology, Grahamstown 6140, South Africa. yPresent addresses: Palmetto Health Richland,
Columbia, South Carolina, USA (D.S.); Research Planning, Inc., Columbia, South Carolina 29201, USA (P.L.S.);
The Maritime Aquarium Norwalk, Connecticut 06854, USA (A.T.); School of Environmental Sciences, University of
Liverpool, Liverpool L69 7ZX, U.K. (N.M.); The Maritime Studies Program, Williams College and Mystic Seaport,
Mystic, Connecticut 06355, USA (M.N.); Climate Program Of� ce, National Oceanic and Atmospheric
Administration, Silver Spring, Maryland 20910, USA (L.P.); U.S. Geological Survey, Paci� c Coastal and Marine

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 10

http://creativecommons.org/licenses/by/4.0
http://www.nature.com/sdata/


Science Center, Santa Cruz, California 95060, USA (M.M.F.); Fenner School of Environment and Society, The
Australian National University, Canberra, Acton 2601, Australia (M.M.N.); University of Washington, Joint Institute
for the Study of Atmosphere and Ocean and Alaska Fisheries Science Center, National Marine Fisheries Service,
NOAA, Seattle, Washington 98195, USA (E.L.R.); Occidental College, Vantuna Research Group, Los Angeles,
California 90041, USA (M.R.); Carnegie Institution for Science, Department of Global Ecology, Stanford, California
94305, USA (K.J.M.); San José State University, Department of Biological Sciences, San José, California 95192,
USA (L.P.M.); University of California, Berkeley, Department of Bioengineering, Berkeley, California 94720, USA
(M.O.); Sonoma State University, Department of Biology, Rohnert Park, California 94928, USA (M.Z.); Valentine
Eastern Sierra Reserve, Mammoth Lakes, California 93546, USA (C.B.); University of Rhode Island, Department of
Natural Resources Science, Kingston, Rhode Island 02881, USA (J.A.M.); California Polytechnic State
University, Biological Sciences Department, San Luis Obispo, California 93407, USA (B.R.); Jefe Laboratorio
de Instrumentación Marina, Instituto de Investigaciones Marinas y Costeras, Santa Marta D.T.C.H. 470006 Colombia
(C.E.P.M.); Universidade do Algarve, Centro de Ciencias do Mar, CIMAR Laboratório Associado, Faro 8005-139,
Portugal (K.R.N.).

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160087 | DOI: 10.1038/sdata.2016.87 11


	Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors
	Background & Summary
	Methods
	Figure 1 Epoxy &#x02018;robomussel&#x02019; biomimetic logger (&#x0007E;8&#x02009;cm in length) deployed in growth position in a Mytilus californianus bed.Loggers were designed to match the thermal characteristics of bivalves and were typically made of ep


