Unexpected Levels of Biological Activity during the Polar Night Offer New Perspectives on a Warming Arctic

Berge, Jørgen; Daase, Malin; Renaud, Paul E; Ambrose, William G; Darnis, Gerald; Last, Kim S; Leu, Eva; Cohen, Jonathan H; Johnsen, Geir; Moline, Mark A; Cottier, Finlo

Published in:
Current Biology : CB
Publication date:
2015

The re-use license for this item is:
CC BY-NC-ND

The Document Version you have downloaded here is:
Peer reviewed version

The final published version is available direct from the publisher website at:
10.1016/j.cub.2015.08.024

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 25. Apr. 2020
Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic

Jørgen Berge¹,², Malin Daase¹, Paul E. Renaud²,³, William G. Ambrose, Jr.³,⁴, Gerald Darnis³, Kim S. Last⁵, Eva Leu³, Jonathan H. Cohen⁶, Geir Johnsen²,⁷, Mark A. Moline⁶, Finlo Cottier⁵,¹, Øystein Varpe²,³, Natalia Shunatova⁸, Piotr Balazy⁹, Nathalie Morata¹⁰, Jean-Charles Massabauau¹¹,¹², Stig Falk-Petersen²,¹, Ksenia Kosobokova¹³, Clara J.M. Hoppe¹⁴, Jan Marcin Węsławski⁹, Piotr Kuklinski⁹, Joanna Legeżyńska⁹, Daria Nikishina⁸, Marine Cusa¹, Monika Kędra⁹, Maria Włodarska-Kowalczyk⁹, Daniel Vogedes¹,², Lionel Camus³, Damien Tran¹¹,¹², Emma Michaud¹⁰, Tove M. Gabrielsen², Andrei Granovitch⁸, Anya Gonchar⁸, Rupert Krapp¹, Trine A. Callesen²

¹ UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, N-9037 Tromsø, Norway
² University Centre in Svalbard, Pb 156, N-9171 Longyearbyen, Norway
³ Akvaplan-niva, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
⁴ Bates College, Department of Biology, Lewiston, Maine 04240 United States of America
⁵ Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK, PA37 1QA
⁶ University of Delaware, School of Marine Science and Policy, Lewes, DE 19958 United States of America
⁷ Norwegian University of Science and Technology, Trondheim Biological Station, N-7491, Trondheim, Norway
⁸ Saint-Petersburg State University, Biological Faculty, Dept. of Invertebrate Zoology, Universitetskaya nab. 7/9, St-Petersburg 199034, Russia
⁹ Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712
Sopot, Poland

10 Laboratoire des Sciences de l’Environnement Marin (LEMAR, UMR 6539, CNRS-IRD-UBO-Ifremer), IUERM, Technopôle Brest-Iroise, Rue Dumont d’Urville, 29280 Plouzané, France

11 Univ. Bordeaux, EPOC, UMR 5805, F-33400 Talence, France

12 CNRS, EPOC, UMR 5805, F-33400 Talence, France

13 Institute of Oceanology, Russian Academy of Science, 117997 Moscow, Russia

14 Alfred Wegener Institute – Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany

Contact: Email: Jorgen.berge@uit.no
The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision-making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].

RESULTS AND DISCUSSION
During three consecutive winters (January 2013-2015), we conducted sampling in Kongsfjorden, Svalbard (79°N 11°E; Figure 1). Our aim was to study biodiversity, biological activity, and ecosystem functions from microalgae to avian top predators, in both pelagic and benthic realms (Figures 2 and 3). We targeted the second half of the 117-day-long polar night when biological activity was expected to be at or near the minimum. Compiling observations from across most phyla and trophic levels allows us to draw conclusions at a scale of biological organization not achievable from more narrow studies [2], and to unequivocally oppose the classical paradigm of an ecosystem in resting mode. This paradigm has recently be challenged for the pelagic ecosystem of the Canadian Arctic [3, 4]. Among our most
striking results were continuous growth in bivalves, actively foraging seabirds and a persistent circadian cycle in both zooplankton and benthos throughout the polar night. Although several prior studies have examined selected aspects of Arctic marine ecosystems from a winter perspective [3-7], none have focused on the darkest period of the year and with an ecosystem perspective.

Pelagic communities

Mid-winter studies from Kongsfjorden [8, 9], and elsewhere in the Arctic [5, 10] have described a microbial community dominated by heterotrophic bacteria and flagellates, with chlorophyll a (Chl a) virtually undetectable. Indeed, Chl a concentrations measured in January 2014 and 2015 (0.01-0.02 µg L⁻¹) were 2-3 orders of magnitude lower than during the spring bloom [11]. Nonetheless, diatom and dinoflagellate cells with high pigment concentration and exhibiting strong Chl autofluorescence were detected in surface waters (Figure S1). In situ photosynthetic rates were below detection limits (0.003 +/- 0.002 µmol C (Chl a⁻¹ d⁻¹)). But, when transferred to artificially illuminated conditions at in situ temperatures, primary production was measurable at an irradiance of 0.5µmol photons m⁻² s⁻¹ (0.465 +/- 0.004 µmol C (Chl a⁻¹ d⁻¹)), indicating that the phytoplankton community was primed to take advantage of the returning light by the end of the polar night (mid-February) when ambient surface irradiance reaches levels between 0.1 and 1µmol photons m⁻² s⁻¹ in Kongsfjorden [12].

Despite no measurable pelagic primary production in January, herbivorous and omnivorous mesozooplankton species were present throughout the water column (Figure 2A, B), albeit in lower abundance than during the summer and autumn (i.e. [9, 13, 14]). Contrary to the common conception that polar organisms synchronize their reproduction with the spring bloom [15], we found evidence of winter reproduction in a range of zooplankton, including
herbivorous, omnivorous, and carnivorous taxa. Copepod nauplii were the most abundant organisms in the zooplankton community (Figure 2A), indicating reproduction of planktic cyclopoids (e.g. *Oithona similis*) and some calanoids (e.g. *Microcalanus* spp., *Metridia longa*). Juvenile stages of ctenophores (*Mertensia ovum*) and pteropods (*Clione limacina, Limacina* spp.), as well as meroplanktic larvae (Nudibranchia, Bivalvia, Polychaeta, Bryozoa) were observed. Moreover, male *Calanus* copepods, largely absent from the population during the light season [14, 16], were observed in high proportions during the polar night at depths between 50 and 200 m (sex ratio 1:4 in favour of females), together with females bearing spermatophores. Such observations confirm the importance of the polar night as the major mating period for this key component of Arctic ecosystems.

In general, the *Calanus* life cycle includes an overwintering period during which certain developmental stages descend towards the bottom where they spend the winter in a state of diapause [15, 17]. We, however, found overwintering stages of *Calanus* spp distributed throughout the entire water column (Figure 2B). Those *Calanus* specimens inhabiting deep oceanic waters (>500 m) may exhibit a more profound form of dormancy during winter [18-20] than in shallow waters (<500 m water depth), perhaps since shallow-water populations may need to be more active to counteract buoyancy forces [21]. However, *Calanus* can successfully overwinter in shelf and coastal waters (< 500 m), and they are usually found at greater depth during autumn and winter [22-24], with their ascent related to ice break-up and the onset of the spring bloom [22, 23]. Our results not only reveal that *Calanus* commence their ascent long before light and food become abundant, but also that their respiration rates per unit biomass in the uppermost 100 m of water column in Kongsfjorden were *higher* in January than in May or September (Figure 2C), and within the range of measurements made in July north of Svalbard [25]. It is unclear how this activity may be sustained.
Acoustic measurements from mid-January to February (Figure S1) obtained using a 125 kHz Acoustic Zooplankton and Fish Profiler (AZFP) confirm previous reports of diurnal vertical migration (DVM) during the polar night [12, 26]. The pattern is weak in mid-January (Figure 1D), but becomes more pronounced from late January onward (Figure S1) as the day-night cycle intensifies. Furthermore, the occurrence of euphausiid and larvacean fecal pellets in sediment traps (Figure 2E, F) indicates feeding in surface waters during the polar night. The importance of this winter DVM and feeding for the pelagic carbon flux should be assessed to better understand biogeochemical cycling of carbon in high arctic marine ecosystems characterized by an extensive dark season.

Benthic communities

Biodiversity, abundance, growth, and reproduction in habitats studied were at similar or higher levels than during seasons with substantial primary productivity (Figure 3 A-D). Strikingly, growth rates in the filter-feeding bivalve _Chlamys islandica_ did not slow during the polar night compared to the rest of the year (Figure 3A). This observation is contrary to seasonal reductions in growth for many bivalve species around the world, especially at high latitudes [27, 28]. Based on these results, we suggest that filter-feeding bivalves likely use resuspended detrital material when fresh phytoplankton is not available. If this material is of lower quality it could still lead to the occurrence of growth rings (caused by seasonal differences in shell growth), but it raises questions as to the generality of seasonal growth patterns. The recorded winter density of benthic macrofauna in Kongsfjorden sediments (mean 9830 ind. m$^{-2}$ in January) did not differ significantly from that recorded in other seasons (from 6300 to 8880 ind. m$^{-2}$ on average), a pattern also noted in shallower habitats [29]. While this was expected for multi-year and infaunal non-migratory organisms, it was surprising that sediment-community respiration rates measured in January were on par with
those measured at the same stations at different times of the year (Figure 3B), and other Arctic locations during summer [30]. In January 2013, temperatures close to the bottom were 3-5 degrees lower than during summer / autumn (Figure S1). Both bivalve feeding and community respiration results may be explained by recent findings documenting that fjord benthos incorporate significant amount of macroalgal detritus into their diets [31]. As macroalgae abundance in polar regions are generally predicted to increase with increasing temperatures [32, 33], this trophic link may increase ecosystem resilience to climate change by reducing the reliance of benthic communities on the highly seasonal, pelagic primary producers [31].

Abundance and biodiversity of fauna associated with the kelp Saccharina latissima and surrounding sediments were considerably higher in January compared to October and May at the same location (Figure 3C). Average densities of invertebrates in January reached more than 60,000 ind. m\(^{-2}\), approximately an order of magnitude greater than values recorded in May and October. Some of this pattern was caused by prolific settlement by a number of benthic species such as Margarites helicinus, Capitella capitata, and Circeis armoricana. Baited traps with time-lapse cameras revealed an abundant, active and species-rich shallow-water scavenging community, dominated by gastropods (Buccinum spp.), amphipods (Anonyx spp. and Onisimus spp.), and crabs (Hyas araneus) (Supplementary data: time- lapse video).

Thus, rates of growth, respiration, and reproduction for the examined benthic organisms were not lower during the polar night compared to other times of the year. In addition, measurements of a potential circadian cycle (24hrs) in both Chlamys islandica valve opening and vertical migration of zooplankton indicated that, despite four months of apparent darkness, activity cycles remain entrained to the existing, but weak diurnal cycles [34] and cues (Table S1).
Seabird and fish communities

Kongsfjorden hosts large seabird colonies with a marked seasonal peak in abundance during spring and summer as they migrate south or to the open ocean during winter [35]. Nevertheless, a number of seabird species were observed foraging in Kongsfjorden (Table 1), although in much lower numbers than during the summer, including little auks (*Alle alle*), black guillemots (*Cepphus grylle*), Brünnich’s guillemots (*Uria lomvia*), northern fulmars (*Fulmarus glacialis*), black legged kittiwakes (*Rissa tridactyla*) and glaucous gulls (*Larus hyperboreus*). Most examined individuals showed evidence of recent feeding (Table 1). The most abundant food items were fish, euphausiids (*Thysanoessa* spp.), and benthic amphipods (*Anonyx nugax*). Actively foraging seabirds under continuously dark conditions have not previously been reported, although one study from 69°N [36] did report cormorants foraging throughout the winter. Importantly, however, at 69°N, there is still considerable ambient light during the daytime [4]. Whilst a dedicated study of how sea birds might detect their prey was not performed, the low degree of digestion in most of the examined stomachs allows us to conclude that they had been foraging locally and thus under continuously dark conditions. Further, most examined birds appear to have selected just one type of prey, not a random selection of available prey items (Table 1). Some of the prey items such as *Thysanoessa* spp. (krill) are known to be bioluminescent [37], which might act as a cue for detecting these organisms in the dark [37-39]. However, there are clearly other search mechanisms that need to be investigated such as acoustic and/or tactile mechanisms as suggested for cormorants and petrels [36, 40].

Active predation by fish was similarly apparent from stomach analyses of specimens collected from both pelagic and bottom trawls at depths down to 250 m (Figure 3D). Interestingly, the more boreal and planktivorous herring (*Clupea harengus*) did not show evidence of feeding, while approximately half of the investigated individuals of polar cod
Boreogadus saida), haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) exhibited a stomach fullness over 50% (Figure 2D, Figure S2). All of these observations confirm active feeding by top predators in the system, and raises the question as to how species known to be visual predators other times of the year are able to find their prey during the polar night.

Outlook and Implications

Irradiance (E) is extremely low during the winter polar night period [34] resulting in primary production rates close to zero [41] and in little newly produced food for pelagic and benthic grazers [42]. Low E is also assumed to hamper feeding by visual predators over much of the water column, including zooplankton, fishes, and seabirds [34, 43]. These factors have led to the paradigm of the polar night being a period of dramatically reduced activity in all components of the system. The extent and intensity of biological processes we observed in Kongsfjorden during the polar night contradict this paradigm. We describe a system in which most taxa and trophic levels are active either earlier than expected or throughout the polar night. In the absence of photosynthetic production, trophic interactions and metabolic rates remained high for most examined consumers, indicating that organisms are able to sustain their activities on alternative food sources or stored reserves. Primary producers were physiologically active and able to rapidly commence photosynthesis as soon as E reaches 0.5μmol photons s⁻¹m⁻², a level occurring (at this site) 2-3 weeks before the sun rises above the horizon (Cohen, unpublished data). High activity by grazing zooplankton could be linked to the observation that phytoplankton are physiologically able to rapidly commence photosynthesis when even very low light levels return. Ultimately, the ability to take advantage of primary production as soon as it occurs may counteract the potential costs of being active during the polar night. Furthermore, predation by many Arctic species does not
seem to be as visually oriented as expected, even for fish and birds (Figure 3D, Table 1). Successful prey detection results in continued feeding during the polar night by a large proportion of both pelagic and benthic predators (Figures 2 and 3). Finally, opportunism (or quick response to environmental cues) may be an important strategy for many species, as evidenced by our findings of classical pelagic-feeding seabirds found with stomachs full of benthic prey, rapid response of the benthic scavengers to food-fall items that become available in the environment, and continuous growth of a suspension-feeder. We therefore suggest a working hypothesis of a top-down, as opposed to bottom-up control of polar marine ecosystems during the polar night. Understood in a strictly classical meaning of the term, this implies the timing and magnitude of the Arctic spring bloom may not be the ultimate driver for biological interactions and processes during the entire year, but rather that governance of ecosystem structure and function is shifted towards higher trophic levels during the polar night. This further implies that, in the absence of primary production, the activities and trophic interactions reported herein were maintained based on stored, recycled and/or advected energy.

Most of the Arctic seas (including the Arctic Ocean itself) are advective systems dominated by the in- or through- flow of Atlantic Water [44, 45]. Our study area is both located well within the high Arctic region and is a region that has undergone significant changes during the last decade. Kongsfjorden has been largely ice-free all year since 2006, and intrusions of Atlantic water have influenced both its general oceanography [46, 47] and biology [48, 49]. As a result, winter temperatures during the last three winters were generally 2-3°C higher compared to the preceding two winters (Figure S3), rendering the fjord a more Atlantic-influenced and warmer location than previously. As such, it provides a relevant and realistic projection of what the pan-Arctic domain may look like in the relative near future. Some of
our individual findings (Figure 2) are in agreement with previous studies, including activity and reproduction of small mesozooplankton in mid-winter [3, 6, 50], ascent of *Calanus* spp. by January [51, 52], and reproduction and settlement of benthic species throughout the winter [53]. They are, however, in contrast with several other studies that found no evidence of early ascent in *Calanus* [23, 54], and low respiration rates of benthos and zooplankton in mid-winter [55, 56]. Some of the concurring studies [50, 51] are from regions strongly influenced by Arctic water and heavy seasonal sea-ice, suggesting that low ice cover and warm water temperatures alone do not explain our observations. Nevertheless, the most dramatic change likely to occur in the Arctic is that currently ice-covered regions will become seasonally ice-free, leading to a larger and more productive Marginal Ice Zone [42]. The annual minimum ice extent occurs in September, and only reaches its maximum in March [57]. Since the polar night is initiated in October at high latitudes, it follows that larger areas of ice-free seas will ‘experience’ the polar night in the future. Thus, our results documenting activity levels across most major phyla from an ice-free Kongsfjorden will likely be highly relevant for broader areas of Arctic ecosystems in the future.

In order to understand how the Arctic Ocean and its ecosystems are changing, attention needs to be directed towards a more factual understanding of today’s biological patterns, processes that occur during the polar night, and the mechanisms responsible for them. Since most biological surveys have ignored the polar night under the old paradigm that activity is low, there are no available comprehensive ecosystem studies that may be used in comparison with ours. However, our conclusion that the ecosystem is not dormant during the polar night is supported by the findings in a recent study of the heterotrophic pelagic food web of the Canadian Arctic [3] and recent case studies mainly from Svalbard [4]. Based on this, and in accordance with our proposed working hypothesis of increased top-down control of Arctic
ecosystems during the polar night, a new perspective emerges – a system less orchestrated by production regimes than previously assumed, and where the timing of annual routines is not primarily linked with the onset of the spring bloom. The immediate implication of this is that knowledge-based management of a region experiencing enhanced environmental change must begin to consider also processes taking place during the polar night.

Methods

Methods and any associated references are available in the Supplementary Information.

Acknowledgments

This study is a contribution to the Norwegian Research Council (NRC) funded projects Circa (NRC 214271) and Marine Night (NRC 226417). The first author was financially supported through the EWMA project (NRC 195160) funded by NRC and ENI Norge AS, whereas other authors received funding from AMOS CoE at NTNU (NRC 223254), Talking clam (NRC 208974), EMAP (NRC 233635), Russian Foundation for Basic Research (project number 13-04-00551), Russian Scientific Foundation (project number 14-50-00095), Statoil, National Science Foundation (PLR-141763) and the Polish Ministry of Science and Higher Education (W157/Norway/2013). The benthic macrofauna study was supported by the French National Agency under the "retour Post Doct" program (ECOTAB project: ANR 11 PDOC 018 01) and Norwegian Arctic Field grant (WIMBA project). Benthic taxonomy work was funded by the "Laboratoire d'Excellence" LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program "Investissements d'Avenir". Also the "EU DEVOTES" project and Svalbard Science Forum have co-financed part of the work.

Jasmine Nahrgang, Pierre Ciret, Mohamedou Sow, Rudolph Corvaisier, Emilie Courtecuisse
and Zofia Smoła are acknowledged for their help and Joanne Muratori for editorial assistance. We are grateful for two anonymous reviewers for their constructive comments on an earlier version of the manuscript. The authors declare no competing financial interests.

Author contributions:
JB: principle investigator, study design, acoustics, fish and bird sampling, interpretation and manuscript preparation
MD: zooplankton sampling and analysis, sediment trap analysis, interpretation and manuscript and figure preparation
PR: study design, interpretation and manuscript preparation
WGA: scallop growth, interpretation and manuscript preparation
GD: zooplankton sampling and analysis, zooplankton respiration, interpretation and manuscript review
KSL: acoustics, interpretation and manuscript review
EL, CJMH: primary production measurements, epifluorescence, interpretation, manuscript preparation and review
JHC: study design, interpretation and manuscript review
GJ: study design, interpretation and manuscript review
MAM: study design, interpretation and manuscript review
ØV: bird and fish sampling and stomach analysis, interpretation and manuscript review
NS, DN: analysis of in- and epifauna on macroalgae
PB: benthic scavengers, time-lapse video
NM, EM: benthic respiration measurements, fauna sampling and manuscript review
JCM: scallop growth and activity measurements
SFP: study design, interpretation and manuscript review
KK: zooplankton analysis, manuscript review

JMW: study design, interpretation and manuscript review

PK, JL, MK, MWK: benthic macrofauna sampling and analyses, manuscript review

MC: fish sampling and stomach analysis, manuscript review

DV: zooplankton and bird sampling, instrumentation, interpretation and manuscript review

LC, DT: scallop growth and activity analysis

TMG: interpretation and manuscript review

FC: acoustics, interpretation and manuscript review

AGr: study design, benthic analyses, manuscript review

AGo: bird sampling and analyses

RK: bird sampling and analyses

TAC: zooplankton sampling and analysis
References

high Arctic polar night sufficient to act as a visual cue for zooplankton? Plos One.
Doi: 10.1371/journal.pone.0126247

35. Hop, H., Pearson, T., Hegseth, E.N., Kovacs, K.M., Wiencke, C., Kwasniewski, S.,

discriminating patterns of bioluminescence from different taxa during the Arctic polar
night. Polar Biol. 37, 707-713.

Bioluminescence in the high Arctic during the polar night. Mar. Biol. 159, 231-237.

41. Tremblay, J.E., Robert, D., Varela, D.E., Lovejoy, C., Darnis, G., Nelson, R.J., and

42. Wassmann, P., and Reigstad, M. (2011). Future Arctic Ocean seasonal ice zones and

Figure and Table legends

Figure 1. Map showing Svalbard (red) and the study area (Kongsfjorden) inserted.

Figure 2. Processes in the pelagic community of the Kongsfjorden marine ecosystem during the polar night. (a) Abundance of small copepods and copepod nauplii (average and standard deviation (SD) of 5 replicate samples). (b) Abundance of copepodite stages of *Calanus* spp. (average and SD of 4 replicate samples). (c) Respiration rates per unit mass of large (>1000μm) and small (200-1000μm) mesozooplankton size classes. Values were higher in January compared to May and September (Kruskal-Wallis test; p<0.0157 and p<0.0007 for large and small mesozooplankton, respectively). (d) Absolute volume backscatter (Sv, in dB) in the upper 80 m from 20-22 January 2014 (e & f) Larvacean (e) and euphausiid (f) fecal pellets in sediment traps from 20-22 of January 2014.

Figure 3. Processes in the benthic and fish communities of the Kongsfjorden marine ecosystem during the polar night (a) Cumulative growth of *Chlamys islandica* specimens (5 out of 10 examined). (b) Benthic respiration rates measured at two sites in January (2013, 2015), May (2012), August (2012, 2014) and September (2012, 2013). (e) Number and abundance of species on *Saccharina latissima* (“Macroalgae”) and in the surrounding sediment (“Sediment”) in October 2013, January 2014, and May 2014. (d) Percentage of empty, <50%, or >50% full stomachs of four fish species caught in a single trawl in January 2015.
Table 1: Stomach contents and morphometrics of seabirds caught in Kongsfjorden in January 2014 and 2015

<table>
<thead>
<tr>
<th>Species</th>
<th>Total weight (g)</th>
<th>Bill length (cm)</th>
<th>Tarsus length (cm)</th>
<th>Date of collection</th>
<th>Stomach contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle alle</td>
<td>230</td>
<td>1.50</td>
<td>2.84</td>
<td>21 Jan 2014</td>
<td>digested remains, mostly empty</td>
</tr>
<tr>
<td>Alle alle</td>
<td>182</td>
<td>1.40</td>
<td>2.75</td>
<td>23 Jan 2014</td>
<td>digested remains of crustaceans, mostly empty</td>
</tr>
<tr>
<td>Alle alle</td>
<td>176</td>
<td>1.54</td>
<td>2.77</td>
<td>25 Jan 2014</td>
<td>digested remains of crustaceans, mostly empty</td>
</tr>
<tr>
<td>Alle alle</td>
<td>204</td>
<td>1.30</td>
<td>2.51</td>
<td>25 Jan 2015</td>
<td>104 Thysanoessa spp.</td>
</tr>
<tr>
<td>Alle alle</td>
<td>158</td>
<td>1.12</td>
<td>2.53</td>
<td>21 Jan 2015</td>
<td>one large Anonyx nugax (full stomach)</td>
</tr>
<tr>
<td>Uria lomvia</td>
<td>728</td>
<td>3.33</td>
<td>4.75</td>
<td>21 Jan 2014</td>
<td>fish otoliths and digested remains, no fresh food</td>
</tr>
<tr>
<td>Uria lomvia</td>
<td>660</td>
<td>3.66</td>
<td>3.81</td>
<td>23 Jan 2014</td>
<td>1 Thysanoessa spp., 11 Anonyx nugax</td>
</tr>
<tr>
<td>Uria lomvia</td>
<td>802</td>
<td>3.40</td>
<td>4.32</td>
<td>23 Jan 2015</td>
<td>>200 Thysanoessa spp., vertebrae/otoliths</td>
</tr>
<tr>
<td>Cephus grylle</td>
<td>374</td>
<td>3.63</td>
<td>3.51</td>
<td>20 Jan 2015</td>
<td>10 Anonyx nugax</td>
</tr>
<tr>
<td>Fulmaris glacialis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22 Jan 2014</td>
<td>digested remains, potentially waste from boat</td>
</tr>
<tr>
<td>Larus hyperboreus</td>
<td>1582</td>
<td>5.91</td>
<td>8.75</td>
<td>2014</td>
<td>2 Hiatella arctica, 3 pieces of plastic</td>
</tr>
</tbody>
</table>
Figure 2
Figure 3
Figure S1
Figure S2

Figure S3