Accumulation of Sellafield-derived radiocarbon (C-14) in Irish Sea and West of Scotland intertidal shells and sediments
Tierney, Kieran M.; Muir, Graham K. P.; Cook, Gordon T.; MacKinnon, Gillian; Howe, John A.; Heymans, Johanna J.; Xu, Sheng

Published in:
Journal of Environmental Radioactivity
Publication date:
2016

The re-use license for this item is:
CC BY

The Document Version you have downloaded here is:
Publisher's PDF, also known as Version of record

The final published version is available direct from the publisher website at:
10.1016/j.jenvrad.2015.10.029

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 03. Oct. 2020
Accumulation of Sellafield-derived radiocarbon (\(^{14}\)C) in Irish Sea and West of Scotland intertidal shells and sediments

Kieran M. Tierney\(^{a, b, *}\), Graham K.P. Muir\(^{a, b}\), Gordon T. Cook\(^{a}\), Gillian MacKinnon\(^{a}\), John A. Howe\(^{b}\), Johanna J. Heymans\(^{b}\), Sheng Xu\(^{a}\)

\(^{a}\) Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK

\(^{b}\) The Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK

\(*\) Corresponding author.

\(E\text{-}mail\) address: k.tierney.1@research.gla.ac.uk (K.M. Tierney).

1. Introduction

The Sellafield nuclear fuel reprocessing plant (formerly known as Windscale), located in Cumbria on the North West coast of England (Fig. 1), is the primary source of anthropogenic radiocarbon (\(^{14}\)C) discharges to the UK environment. The \(^{14}\)C waste that arises during fuel reprocessing is discharged under authorisation to the atmosphere and the Irish Sea (Fig. 2). Discharges of low-level liquid radioactive effluent, containing \(^{14}\)C, are via pipelines that extend 2.1 km offshore, while regulated discharges to the atmosphere are made from a wide range of facilities at the site, including the fuel storage ponds, reprocessing plants and waste treatment plants (RIFE, 2011). Reprocessing of radioactive waste has been ongoing since 1952, however, monitoring of \(^{14}\)C discharges only began in 1984 (BNFL, 1985). Subsequently, discharges for the earlier period to both the atmosphere and the NE Irish Sea were estimated by measuring the \(^{14}\)C activity in annual rings from trees felled in close proximity to Sellafield (Gray et al., 1995; McNamara and McCartney, 1998; Isogai et al., 2002) and annually collected seaweed (Cook et al., 2004a), respectively. Between 1984 and 1993 Sellafield discharged, on average, 1.78 TBq year\(^{-1}\) of \(^{14}\)C to the Irish Sea (BNFL, 1985–1989; MAFF, 1992–1994). However, an increase in the volume of waste reprocessed and, to a larger extent, a change in discharge policy in 1994 resulted in an increase in aquatic \(^{14}\)C discharges to 8.17 TBq for that year. \(^{14}\)C discharges peaked in 2003 and although discharged activities have since reduced, they have remained relatively high. On average, Sellafield has discharged 8.13 TBq year\(^{-1}\) between 1994 and 2013 (MAFF, 1995; RIFE, 1996–2014). Its long half-life (5730 years), high environmental mobility and high bio-availability make Sellafield-derived \(^{14}\)C the largest contributor to the collective dose commitment to UK and European populations from the entire nuclear industry (BNFL, 2002). Also, \(^{14}\)C is estimated to be the largest contributor to the collective total dose that the global population receives from nuclear fuel processes (UNSCEAR, 2008). Therefore, it is very
important to understand its distribution and long-term fate in the environment.

14C is discharged into the Irish Sea primarily as inorganic carbon and is incorporated into the dissolved inorganic carbon (DIC) component of seawater (Begg et al., 1992). Enhanced 14C activities in the DIC component of seawater have previously been detected at a range of sites around the British coastline (Cook et al., 1998). Marine mollusc species predominantly utilise DIC for shell formation (McConnaughey et al., 1997) and so have the potential to incorporate 14C during calcification. Analysis of shells and sedimentary inorganic carbon by Cook et al. (2004b) revealed enhanced activities in whole shell and, to a lesser extent, in coarse sediment (>500 μm) fractions at near-field sites to the north of Sellafield, with a trend of decreasing activity with increasing distance from Sellafield. Following this study, Muir et al. (2015) found shell and sediment 14C activities had increased at the same sites between 2001 and 2011. It was also confirmed that as 14C-enriched shells erode they contribute 14C to the sediment, gradually increasing the activity of progressively finer sediments within the intertidal zone (Muir et al., 2015). These two studies were confined to an area where transport of Sellafield-derived radionuclides is largely dominated by particle transport (MacKenzie et al., 1987), which has been suggested as a possible mechanism for redistributing fine material enriched in 14C (Muir et al., 2015).

Long-term dilution and dispersion of Sellafield aquatic discharges are dictated by a net northerly movement of water through the North Channel and wind driven turbulent diffusion (Dunster, 1998). Water moving through the North Channel becomes a significant component of the Scottish Coastal Current (McKay et al., 1986; Hill and Simpson, 1988) and this, in turn, is a contributory source of water to the Fair Isle Current that flows round the northern Scottish coast and into the North Sea (Turrell and Henderson, 1990). Despite its high bioavailability, close to 100% of 14C discharged from Sellafield is dispersed northwards through the North Channel (Wolstenholme et al., 1998; Gulliver et al., 2001) and is subsequently transported in solution around the Scottish coastline (Gulliver et al., 2004) where it has the potential to accumulate.

This study addresses both particle and solution transport of 14C.

Fig. 1. UK map (a) with study area (b) showing Sellafield and study sites.
by sampling a range of sites within the area dominated by particle transport and that dominated by solution transport, with particular attention being given to sites north of Sellafield beyond the area dominated by particle transport. In addition, sites south of Sellafield were sampled to investigate any southward transport of \(^{14}\)C. A background value for the west coast UK marine environment was determined, allowing any enrichment in \(^{14}\)C concentration to be identified. The work presented here is a component of a larger study investigating the fate of Sellafield-derived \(^{14}\)C in the marine environment including transport and uptake in intertidal sediments, offshore sediments and marine organisms.

2. Methodology

Samples were collected in late 2013/early 2014 from eight intertidal sites on the UK west coast as shown in Fig. 1. Six of these sites are located north of Sellafield with two (Parton and Allonby) studied previously (Cook et al., 2004b; Muir et al., 2015). Parton and Allonby were chosen to gain an understanding of how the \(^{14}\)C activity in shells/intertidal sediment was responding to changes in discharge over time. The other four northern sites (Kippford, Garlieston, Maidens and Port Appin) are increasingly distant from Sellafield and of these, Maidens and Port Appin are well beyond the area dominated by particle transport of Sellafield-derived radionuclides (MacKenzie et al., 1987) and designated as far-field due to being located north of the North Channel. Two sites south of Sellafield were also sampled (Ravenglass and Barrow).

Several kilograms of surface sediment, including shells, were collected randomly along the high water mark at each of the eight sites. Shell collection was non-species-specific and species were later identified in the laboratory. In addition, mussel shells from recently dead individuals (shells were still hinged) were sourced from Bunbeg on the west coast of Ireland, to provide a measure of contemporary marine inorganic \(^{14}\)C background. This site is geographically close to a background sampling site used previously (Cook et al., 1998), and on the Atlantic coastline, thus virtually free of UK coastal influences.

The sediments were oven dried at 40 °C and sieved into four size fractions; >2 mm, 500 \(\mu\)m - 2 mm, 63-500 \(\mu\)m and <63 \(\mu\)m. Shell fragments were picked from the >2 mm fraction and homogenised using a mortar and pestle. Common cockle (Cerastoderma edule), common periwinkle (Littorina littorea) and blue mussel (Mytilus edulis) shells were the most ubiquitous whole shells collected across all sites and, where more than two of these shells were available, they were analysed for \(^{14}\)C activity. Cockle shells were available from four, mussel shells from six, and winkle shells from seven sites. The shells were placed in a sonic bath for approximately 10 min to remove any adhering sediment and organic matter (i.e., extraneous algae) and then washed thoroughly with distilled water. They were subsequently crushed, homogenised and sub-sampled to provide a single composite sample for each species at each site.

Samples were hydrolysed within a vacuum system using excess 1 M hydrochloric acid (HCl) and the liberated CO\(_2\) was cryogenically purified under vacuum using liquid N\(_2\). Sub-samples (3 ml) of CO\(_2\) were converted to graphite according to the method of Slota et al. (1987) and measured on a NEC 250 kV single-stage accelerator mass spectrometry (SSAMS) (Naysmith et al., 2010). A further sub-sample of CO\(_2\) was taken for \(^3\)He measurement by isotope ratio mass spectrometry using a VG SIRA 11 (Ascough et al., 2012). Results were converted from AMS fraction modern values to specific activity in Becquerel's per kilogram of carbon (Bq kg\(^{-1}\) C) using the regime described for enhanced \(^{14}\)C activities in Mook and van der Plicht (1999). Uncertainties are less than 0.5% of the measured activity.

3. Results and discussion

3.1. \(^{14}\)C Background activity

Analysis of a combined sample of 6 hinged mussel shells from the west coast of Ireland produced a \(^{14}\)C activity of 249 ± 1 Bq kg\(^{-1}\) C. This value is comparable to the background activity for 1995 published by Cook et al. (1998) of 247.6 ± 1.0 Bq kg\(^{-1}\) C and indicates a steady-state \(^{14}\)C activity for the marine environment in this area. Mussels predominantly utilise DIC directly from the water column to build their shells, although shell carbon can also be sourced metabolically from their diet (McConnaughey et al., 1997; Gillikin et al., 2006). Due to their selective filter feeding habit, mussels primarily consume phytoplankton, and as phytoplankton also derive carbon from DIC during photosynthesis (Lalli and Parsons, 1993), it follows that mussel shell \(^{14}\)C activity will reflect the local DIC concentration in the DIC. The west coast of Ireland is relatively free of UK anthropogenic inputs with water being predominantly Atlantic in origin. This value is therefore used as a background activity and a baseline against which to measure enriched \(^{14}\)C in west coast UK marine samples.
3.2. Shell 14C

Results for whole shells are presented in Fig. 3 (mussel shells), Fig. 4 (winkle shells) and Fig. 5 (cockle shells), and in Table 1. The highest measured activities across all shell types were at Ravenglass (2350 Bq kg$^{-1}$ C for mussel shells) which, although located south of Sellafield, is the site closest to the reprocessing facility. Despite the net yearly northward flow, seasonal southward flow, due to prevailing winds, is known to occur in the Irish Sea (Davies et al., 2002; Dabrowski and Hartnett, 2008; Dabrowski et al., 2010), which would disperse discharged effluent south of Sellafield. Only winkle shells were available from the most southern site, Barrow, and were found to have a 14C activity less than background (234 Bq kg$^{-1}$ C), the only site where this was the case. The δ^{13}C for this sample was -11.4% which indicates that these organisms were not living in a truly marine environment and that there is a freshwater carbonate contribution to their shell formation; in comparison, the δ^{13}C values for all other samples were between -0.5 and $+2.8\%$, indicative of a marine environment (Keith et al., 1964). The Barrow samples were collected on the Duddon Estuary, fed largely by the River Duddon, which is likely to be the source of this terrestrial/freshwater δ^{13}C signal and below-background 14C activity. This reduction in activity below ambient background could be due to a number of factors including dissolution of geological carbonate in the catchment or oxidation of old organic matter in the water column. As Barrow shell fragment activity (discussed in 3.3) is above background and produced a marine δ^{13}C signal ($+0.1$) it is probable that the whole winkle shells are not representative of the environment they were found in and have been washed downstream from a site closer to the river mouth. At other sites, whole shell activities generally reduce moving north from Sellafield but remain above background. All shell types found at the two far-field sites (Maidens and Port Appin) were enriched, indicating significant 14C enrichment of the DIC component of Scottish coastal water. A preliminary result of direct analysis of the DIC component of water in the Firth of Lorn (West Scotland) in spring 2014 (298 Bq kg$^{-1}$ C) confirms this enrichment.

Mussel shells typically had the highest activities at each site (average for all sites = 917 Bq kg$^{-1}$ C) followed by winkle (690 Bq kg$^{-1}$ C) and then cockle shells (495 Bq kg$^{-1}$ C). The disparities between species may be explained to some extent by their respective ecologies. Mussels are filter feeders predominantly feeding on phytoplankton which derive all their carbon from DIC. Winkles graze on algae and some intertidal algae such as sea lettuce (which is a known food source for winkles), can utilise atmospheric carbon when exposed to the atmosphere (Murthy et al., 1987). The influence of Sellafield on the atmospheric 14C activity only extends to around 10 km from the plant, thereafter, the activity is greatly diluted and the general atmospheric activity is relatively constant (McCartney et al., 1988). The 14C activity of terrestrial vegetation is a good proxy for atmospheric activity and the 14C activity of a Scottish barley mash (a bi-product of the whisky industry) from 2013, was 229 Bq kg$^{-1}$ C, significantly lower than the DIC 14C activity measured at sites remote from Sellafield, such as the Firth of Lorn (298 Bq kg$^{-1}$ C). The lower atmospheric 14C activity would result in a reduced algal activity relative to the DIC. As some of the carbon used in shell building by marine molluscs is metabolically derived, this will manifest itself in a reduced winkle shell 14C activity relative to mussel shells. Cockles have the lowest activity although the reason for this is less obvious. Like mussels, cockles are filter feeders and will be sourcing similar food-stuffs at the same sites. However, mussels and winkles inhabit surface environments whereas cockles bury themselves in the sediment. It would seem unlikely that cockles are sourcing less enriched DIC from sediment pore water in their immediate vicinity as they are only shallow burrowers (typically down to 5–10 cm maximum) and it is well established that the sediments are well mixed to significant depths primarily due to bioturbation (Kirby et al., 1983), hence, the pore water here is likely to be well mixed with water overlying the sediment. However, the 14C activity of the organic component of surface sediments can be significantly depleted. For example, Wolstenhome et al. (1998) demonstrated depletion in surface sediments of the NE Irish Sea while the particulate organic carbon (POC) and DIC fractions of the water column were enriched above the ambient background value. Therefore, if organic matter in the surface sediment contributes some carbon to shell formation, this could account for the lower activities.

3.3. Sediment 14C

Results for sediment fractions are presented in Fig. 6 and Table 1. Shell fragments were enriched above background at all sites, including Barrow. Large shell fragments are unlikely to have been transported from sites closer to Sellafield and suggest that whole shells in this area, and therefore DIC, were above background. Circulation models have suggested that seasonal southward flow of water will disperse dissolved radionuclides from Sellafield as far as Liverpool Bay (Dabrowski and Hartnett, 2008). The highest measured activity was again south of Sellafield at Ravenglass (627 Bq kg$^{-1}$ C in shell fragments). Overall, 14C activity generally decreases with distance from Sellafield. At far-field sites, enriched activities were found in shell fragments at Maidens (334 Bq kg$^{-1}$ C) and Port Appin (273 Bq kg$^{-1}$ C) with the 500 μm–2 mm fraction also enriched at the latter site (276 Bq kg$^{-1}$ C). As the higher-activity, whole shells are gradually broken down by in-situ erosion, the finer material that is produced will be incorporated into the sediment, gradually increasing its activity (Cook et al., 2004b). This is on the assumption that whole shells break down to coarse fragments and subsequently to finer and finer size fractions. If in-situ erosion of shells is the predominant source of 14C to sediment, it follows that currently, there should be a general reduction in activity with decreasing particle size as there will be a larger proportion of older

![Fig. 3. Gross 14C specific activities (Bq kg$^{-1}$ C) in mussel shells. The dashed line indicates the measured background activity of 249 Bq kg$^{-1}$ C measured in mussel shells from the West Coast of Ireland. Note that errors are minimal and would not be clearly observable on this scale, they can, however, be seen in Table 1.](Image)
Gross 14C activities in intertidal shells and sediments (Bq kg⁻¹ C). The δ13C values are relative to VPDB (Craig, 1957).

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sampling site</th>
<th>Port Appin</th>
<th>Maidens</th>
<th>Garlieston</th>
<th>Kirkford</th>
<th>Allonby</th>
<th>Porton</th>
<th>Ravenglass</th>
<th>Barrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Shells</td>
<td>Mussel Shells</td>
<td>304 ± 2 (0.5)</td>
<td>348 ± 2 (0.7)</td>
<td>698 ± 3 (2.2)</td>
<td>na</td>
<td>688 ± 3 (−0.4)</td>
<td>1120 ± 5 (−0.2)</td>
<td>2350 ± 11 (−0.5)</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Cockle Shells</td>
<td>267 ± 1 (0.3)</td>
<td>na</td>
<td>418 ± 2 (2.8)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>929 ± 6 (−0.1)</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Winkle Shells</td>
<td>275 ± 1 (0.7)</td>
<td>374 ± 2 (0.3)</td>
<td>332 ± 2 (0.4)</td>
<td>na</td>
<td>245 ± 2 (1.5)</td>
<td>1210 ± 5 (0.6)</td>
<td>2160 ± 9 (0.5)</td>
<td>234 ± 1 (−11.4)</td>
</tr>
<tr>
<td>Sediment</td>
<td>Shell fragments (>2 mm)</td>
<td>273 ± 1 (1.0)</td>
<td>334 ± 2 (0.1)</td>
<td>302 ± 2 (0.7)</td>
<td>322 ± 2 (0.3)</td>
<td>527 ± 2 (−0.1)</td>
<td>444 ± 2 (2.0)</td>
<td>627 ± 3 (−2.5)</td>
<td>290 ± 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td>Sediment 500 μm⁻² mm</td>
<td>276 ± 1 (0.9)</td>
<td>241 ± 1 (−0.7)</td>
<td>224 ± 1 (0.2)</td>
<td>427 ± 2 (0.1)</td>
<td>223 ± 1 (−0.6)</td>
<td>152 ± 1 (1.8)</td>
<td>161 ± 1 (0.6)</td>
<td>22.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Sediment 63–500 μm</td>
<td>17.7 ± 0.1 (−1.7)</td>
<td>86.8 ± 0.3 (0.9)</td>
<td>92.9 ± 0.4 (−1.6)</td>
<td>283 ± 1 (−0.2)</td>
<td>139 ± 1 (1.6)</td>
<td>214 ± 1 (0.0)</td>
<td>194 ± 1 (−1.4)</td>
<td>14.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Sediment <63 μm</td>
<td>44.9 ± 0.2 (1.0)</td>
<td>87.8 ± 0.3 (−2.9)</td>
<td>63.7 ± 0.2 (0.2)</td>
<td>115 ± 1 (−0.4)</td>
<td>308 ± 2 (−0.3)</td>
<td>443 ± 2 (0.1)</td>
<td>174 ± 1 (−2.8)</td>
<td>31.2 ± 1 (−1.1)</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sampling site</th>
<th>Port Appin</th>
<th>Maidens</th>
<th>Garlieston</th>
<th>Kirkford</th>
<th>Allonby</th>
<th>Porton</th>
<th>Ravenglass</th>
<th>Barrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Shells</td>
<td>Mussel Shells</td>
<td>304 ± 2 (0.5)</td>
<td>348 ± 2 (0.7)</td>
<td>698 ± 3 (2.2)</td>
<td>na</td>
<td>688 ± 3 (−0.4)</td>
<td>1120 ± 5 (−0.2)</td>
<td>2350 ± 11 (−0.5)</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Cockle Shells</td>
<td>267 ± 1 (0.3)</td>
<td>na</td>
<td>418 ± 2 (2.8)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>929 ± 6 (−0.1)</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Winkle Shells</td>
<td>275 ± 1 (0.7)</td>
<td>374 ± 2 (0.3)</td>
<td>332 ± 2 (0.4)</td>
<td>na</td>
<td>245 ± 2 (1.5)</td>
<td>1210 ± 5 (0.6)</td>
<td>2160 ± 9 (0.5)</td>
<td>234 ± 1 (−11.4)</td>
</tr>
<tr>
<td>Sediment</td>
<td>Shell fragments (>2 mm)</td>
<td>273 ± 1 (1.0)</td>
<td>334 ± 2 (0.1)</td>
<td>302 ± 2 (0.7)</td>
<td>322 ± 2 (0.3)</td>
<td>527 ± 2 (−0.1)</td>
<td>444 ± 2 (2.0)</td>
<td>627 ± 3 (−2.5)</td>
<td>290 ± 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td>Sediment 500 μm⁻² mm</td>
<td>276 ± 1 (0.9)</td>
<td>241 ± 1 (−0.7)</td>
<td>224 ± 1 (0.2)</td>
<td>427 ± 2 (0.1)</td>
<td>223 ± 1 (−0.6)</td>
<td>152 ± 1 (1.8)</td>
<td>161 ± 1 (0.6)</td>
<td>22.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Sediment 63–500 μm</td>
<td>17.7 ± 0.1 (−1.7)</td>
<td>86.8 ± 0.3 (0.9)</td>
<td>92.9 ± 0.4 (−1.6)</td>
<td>283 ± 1 (−0.2)</td>
<td>139 ± 1 (1.6)</td>
<td>214 ± 1 (0.0)</td>
<td>194 ± 1 (−1.4)</td>
<td>14.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>Sediment <63 μm</td>
<td>44.9 ± 0.2 (1.0)</td>
<td>87.8 ± 0.3 (−2.9)</td>
<td>63.7 ± 0.2 (0.2)</td>
<td>115 ± 1 (−0.4)</td>
<td>308 ± 2 (−0.3)</td>
<td>443 ± 2 (0.1)</td>
<td>174 ± 1 (−2.8)</td>
<td>31.2 ± 1 (−1.1)</td>
</tr>
</tbody>
</table>

Table 1

Fig. 4. Gross 14C specific activities (Bq kg⁻¹ C) in winkle shells. The dashed line indicates the measured background activity of 249 Bq kg⁻¹ C.

Fig. 5. Gross 14C specific activities (Bq kg⁻¹ C) in cockle shells. The dashed line indicates measured background activity of 249 Bq kg⁻¹ C.

sediment (63–500 μm) activity increased between each study whereas there is little change in fine sediment (<63 μm) activity. At Allonby, mussel shell activity again increases between 2001 and 2011 and decreases by 2014. All sediment fractions increased in activity towards 2014, most significantly in the finest fraction (<63 μm) between 2011 and 2014.

The shell lengths of mussel shells used in this study were typically 5–6 cm, meaning the mussels would have been about 5 years in age (Bayne and Worrall, 1980). If, for the three studies, the mean aquatic 14C discharged activity for the 5 years prior to sampling is compared to the whole mussel shell activities, it can be observed that mussel shell activity responds in accordance with discharge activity (Table 2). The activity of whole mussel shells at Parton increased from 1090 Bq kg⁻¹ C in 2001 to 1430 Bq kg⁻¹ C in 2011 in response to an increase in the 5 year average discharge from 5.93 TBq y⁻¹ to 7.06 TBq y⁻¹. This was followed by a reduction in mussel shell activity in 2014 to 1120 Bq kg⁻¹ C, corresponding to a reduction in average discharge over the previous 5 years to 5.71 TBq. A similar pattern in 14C activities is observed at Allonby.

The increasing activity in sediment fractions at Allonby (which is also apparent in the intermediate fraction at Parton) supports the hypothesis that as whole shells erode they will contribute enhanced 14C activities to the sediment. However, a considerable change is found in the finest sediment at Allonby, from 14C-depleted in 2011 (89 Bq kg⁻¹ C) to significantly enriched in this study (308 Bq kg⁻¹ C). It is unlikely that the difference between these two studies could be solely explained by erosional processes within the time interval of about 3 years. Although, it is possible that this difference could be the result of sampling location on site, a more likely explanation may be offered by particle transport processes. Fine, highly enriched particulate material from sites closer to Sellafield may be re-suspended (possibly during storm events), transported northwards with prevailing currents and redeposited at Allonby. This would be consistent with northward currents and known northward movement of sediment within the Irish Sea (Mackenzie et al., 1987, 1994, 1998, 1999; McDonald et al., 1990; Cook et al., 1997). The selective particle transport of fine material over coarser material from more enriched areas may help explain the relatively high activities found in finer material at other sites including Parton. The pre-existing 14C enriched activity at Parton may be due to previous sedimentary deposition of enriched material. Subsequently, there was no observed 14C increase in the finest sediment fraction at Parton between 2011 and 2014 as the activity of any newly deposited material was similar.

4. Conclusions

The results of this study suggest that the 14C activity in whole mussel shells at two previously-investigated sites on the NE Irish Sea coast, north of Sellafield, are varying in response to the average 14C discharge over the preceding 5 years. In contrast, there is a

Table 2

<table>
<thead>
<tr>
<th>Year of shell collection (study)</th>
<th>Mussel shell Activity (Bq kg⁻¹ C)</th>
<th>5 Year average Sellafield marine discharge previous to collection date (TBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001 (Cook et al., 2004b)</td>
<td>1090 766</td>
<td>5.93</td>
</tr>
<tr>
<td>2011 (Muir et al., 2015)</td>
<td>1430 972</td>
<td>7.06</td>
</tr>
<tr>
<td>2014 (present study)</td>
<td>1120 688</td>
<td>5.71</td>
</tr>
</tbody>
</table>
general increase in the 14C activity of the finer fractions of the inorganic intertidal material, confirming the previous hypothesis of an increased activity in fine material as whole shells/larger fragments formed during the nuclear era are broken down over time. Consequently, the 14C activity of the inorganic carbon component of intertidal and sub-tidal NE Irish Sea sediments will gradually increase. The 14C activity of shell fragments at all Scottish sites were also enriched relative to ambient background (with the 500 μm–2 mm fraction close to ambient background), suggesting that a similar trend will be observed in time at these more remote sites. On average, the 14C activity in whole shells follows the trend of mussels > winkles > cockles which reflects their feeding habits and the ecological niche they occupy.

Acknowledgements

This work was completed as part of the LO-RISE (Long-lived Radionuclides in Surface Environments; NE/L006202/1) consortium under the NERC RATE programme (Radioactivity and the Environment), co-funded by the Environment Agency and Radioactive Waste Management Ltd. The authors would also like to thank SUERC Radiocarbon Laboratory staff for help with 14C analyses.

References

carbon 43 (2B), 869–877.
gamon Press, Oxford, pp. 52–79.
McCartney, M., Baxter, M.S., Scott, E.M., 1988. Carbon-14 discharges from the nu-
McKay, W.A., Baxter, M.S., Eckett, D.J., Meldrum, D.T., 1986. Radioresiouse and cir-
culation patterns west of Scotland. J. Environ. Radioact. 4, 205–232.