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ARTICLE INFO ABSTRACT

Keywords King Scallop (Pecten maximus) is the third most valuable species landed by UK fishing vessels. This research as-
Scallop sesses the potential to use a Convolutional Neural Network (CNN) detector to identify P. maximus in images of the
CNN seabed, recorded using low cost camera technology. A ground truth annotated dataset of images of P. maximus
Pecten maximus captured in situ was collated. Automatic scallop detectors built into the Video and Image Analytics for Marine En-

Assessment vironments (VIAME) toolkit were evaluated on the ground truth dataset. The best performing CNN (NetHarn_1_-
;L‘:IIXIE class) was then trained on the annotated training dataset (90% of the ground truth set) to produce a new detector
etharn

specifically for P. maximus. The new detector was evaluated on a subset of 208 images (10% of the ground truth
set) with the following results: Precision 0.97, Recall 0.95, F1 Score of 0.96, mAP 0.91, with a confidence thresh-
old of 0.5. These results strongly suggest that application of machine learning and optimisation of the low cost
imaging approach is merited with a view to expanding stock assessment and scientific survey methods using this

non-destructive and more cost-effective approach.

1. Introduction

Around 80% of the global catch corresponds to commercially fished
species of fish and shellfish that lack adequate data for stock assess-
ments, which support sustainable fisheries management (Costello et
al., 2012). This situation is particularly acute in small-scale inshore and
artisanal fisheries that may be unregulated, unreported, or illegal. Stock
assessments in developed countries can often be deficient and outdated
because they can be relatively expensive and time consuming to conduct
on a regular basis. The increasing use of novel, low cost systems and
processes for collecting and processing data that could feed into stock
assessments could significantly improve fisheries management practices.

The King Scallop (Pecten maximus) is the third most valuable species
landed by UK vessels (after mackerel and Nephrops), worth £66.5 mil-
lion in first sales value in 2016 and a five-year average of £59.5 mil-
lion. Despite declining catches per unit effort, in recent years more li-
censes have been activated and more boats have entered these fisheries
as the price of scallops has increased (Cappell et al., 2018)). The ma-
jority of scallops are harvested using dredges that impact the seabed re-

* Corresponding author.
E-mail address: maj8@st-andrews.ac.uk (M.A. James)
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sulting in the disturbance and destruction of seabed habitat, and fauna
(Curry and Parry, 1999; Hinz et al., 2011; Hunt et al., 2007;
Jenkins et al., 2001). As a result, the scallop dredge fishery is contro-
versial and the subject of increasingly restrictive and intrusive regula-
tion and monitoring.

A combination of methods are used to assess scallop stocks but the
most common is an aged structured method, Virtual Population Analy-
sis (VPA). This methods uses reported landings data along with age and
length frequency data collected as part of market sampling programmes.
The VPA provides annual estimates of yield, fishing mortality, spawning
stock biomass and recruitment. Scallop dredge surveys complement the
VPA as they provide information on the most recent changes in abun-
dance, recruitment, age structure, growth rate, and other biological data
(Mason et al., 1991).

A Time Series Analysis (TSA) approach is now favoured in some area
as it is deemed to have a number of advantages over typical VPA ap-
proaches including: allowing fishing mortality estimates to evolve over
time in a constrained manner; providing precision estimates of esti-
mated parameters (numbers at age and fishing mortality at age); cop-
ing with the omission of catch or survey data if data are of poor quality
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or missing; allowing survey catchability to evolve over time. A full de-
scription of TSA use in scallop stock assessment can be found in Dobby
et al., 2017.

There is currently no reliable low cost, non-destructive method in
use by those charged with the management of P. maximus stocks to as-
sess abundance in situ. Most stocks remain data deficient and a major
barrier to addressing this challenge is the cost of undertaking stock as-
sessments using conventional methods. The research reported in this pa-
per is based on the opportunistic use of a large image set of P. maximus
generated for another project using low cost camera technology that has
been used here to assess the utility of a suitably tuned CNN to automati-
cally identify P. maximus. In addition, we explore the performance of the
tuned CNN for detecting P. maximus in images acquired by divers and a
Remotely Operated Vehicle in two sample locations with different depth
and benthic characteristics.

P. maximus also known as the “great scallop” or “king scallop” is
a marine bivalve mollusc of the family Pectinidae (See Fig. 1.). They
are widely distributed in the eastern Atlantic along the European coast
from northern Norway, south to the Iberian peninsula, and have also
been reported off West Africa (Brand, 2006). They can be found in
offshore waters down to 100 m on predominantly sandy, fine gravel or
sandy gravel sediments (Mason 1983). Great scallops generally recess in
the substrate to accommodate the shallow hemispherically domed right
valve (shell). The left valve is flat and usually level with or just be-
low the surface of the substrate (Baird, 1958). As a result, sand, mud,
gravel or living organisms coat the upper valve, making them difficult
to detect by predators (or divers).

In waters around the United Kingdom P. maximus becomes sexually
mature at around 2-3 years old and when they reach 80 to 90 mm in
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shell length. In Scottish waters, a minimum landing size of 110 mm is
in place except for Shetland (100 mm) and the Irish Sea south of 55°N
(105 mm) to prevent the harvesting of juvenile stocks. Where they are
not exploited, they may live for more than 20 years and reach shell
lengths of more than 200 mm (Beukers-Stewart and Beukers-Stew-
art, 2009).

Scallop stock assessment data (abundance, size and age) is usually
collected through a combination of fishery independent dredge surveys
and fishery dependent surveys of landed catch. Attempts to use in-situ
underwater surveys using still or video imagery captured by diver, Re-
motely Operated Vehicle's (ROV) and benthic sledges have been under-
taken but these require manual analysis of the images which is both time
consuming and expensive (Richards et al., 2019).

In the temperate waters and at the depths at which P. maximus oc-
curs, water clarity is often limited by ambient light levels and suspended
particulate material. The propensity of this species to partially recess in
seabed sediment can also impede visual identification. P. maximus also
tends be more widely dispersed on the seabed than other scallop species
such as the Atlantic Sea Scallop (Placopecten magellanicus). These fac-
tors together with image quality may further limit the ability to reliably
identify this species of scallop from images alone.

Machine learning is increasingly being applied to automate challeng-
ing image analyses in the form of deep learning, a class of which are
Convolutional Neural Networks (CNN) most commonly applied to an-
alyzing visual imagery (Zhang et al., 2018). A CNN is trained on a
ground truth dataset, i.e. sets of images with features of interest anno-
tated by humans. In the context of object detection, the ground truth
images contain rectangles drawn around objects of interest. A trained
CNN is called a model. With respect to the object detection task, a

Fig. 1. Fi
benthic material.

1 Image of King scallop (Pecten maximum) in typical benthic habitat. The curvature of the edge of the shell (white) is clearly visible, but most of the shell is covered with

Table
Table ' '+ luation of the existing models in VIAME.
Model Precision Recall F1 score mAP Confidence threshold Average difference in number of predicted vs annotated scallops per image
YOLO 0.89 0.54 0.68 0.52 0.00 0.49
NetHarn_1_class 0.82 0.74 0.77 0.75 0.34 0.40
NetHarn_4_classes 0.77 0.51 0.61 0.5 0.00 0.7
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model is also called a detector. A detector can be then applied to au-
tomatically identify and quantify the objects of interest in new images.
An existing detector trained on a large ground truth dataset can be fur-
ther fine-tuned on a smaller dataset. Fine-tuning is a process that takes a
model that has already been trained for one type of object (e.g. P. mag-
ellanicus scallops) and then tunes or adjusts the model to make it detect
a similar but different type of object (e.g. P. maximus scallops). The un-
derlying assumption is that the new small dataset is not significantly dif-
ferent from the original dataset and the pre-trained model has already
learned features that are relevant for the new detection challenge.

Here we report on a method that could be used to help improve as-
sessments of the abundance P. maximus, using readily available low cost
camera technology and a trained CNN to automatically analyse images
(and video) to provide in situ counts of scallops, thus providing mea-
sures of abundance without the need for potentially destructive sam-
pling using scallop dredges. The ability to automatically identify scallops
in situ could also offer future potential to develop less harmful research
trawl survey methods and commercial harvesting practices by reducing
the need for speculative dredging by fishers in search of new fishing
grounds and facilitate the development of technologies using robotics
for example to select individual specimens thus limiting disturbance to
the benthos.

The objectives of this study were: step 1) to collate a ground truth
annotated dataset of images of P. maximus captured in situ; step 2) eval-
uate automatic scallop detection algorithms built into the Video and Im-
age Analytics for Marine Environments (VIAME) toolkit (Dawkins et
al., 2017; Hoogs et al., 2020); step 3) to train the best performing
CNN (selected in step 2) on the annotated dataset and thus obtain a new
detector specifically for P. maximus.

The annotated data set was created from multiple images recorded
from transects seeded with a known quantity of scallops. In addition,
the annotated data set represents two different scallop habitats with im-
ages recorded separately by diver and ROV. The annotated data set was
therefore also used to assess whether useful comparisons could be made
with respect to the data collection method, location, depth, and benthic
habitat. This information has been used to provide guidance on optimis-
ing the acquisition of images for use in the automated analysis of P. max-
imus densities on the seabed.

2. Material and methods

The images used in this research were a by-product of a PhD pro-
ject designed to assess the potential to develop structure from motion
(SfM) photogrammetry (Micheletti et al., 2015) of scallop stocks.
Thirty-three live P. maximus of various sizes (110-128 mm shell length,
97-125 mm shell height) were randomly distributed by hand by a
SCUBA diver along a 25 m transect. Once distributed, a second SCUBA
diver surveyed the 25 m transect using a boustrophodonic survey pat-
tern (Burns et al., 2015) across a total survey area of 50m2. Two
hours later, an ROV was used to survey the transect and finally a sec-
ond SCUBA diver transect survey was conducted approximately 5 h af-
ter the scallops had first been distributed on the sea bed. The ROV sur-
vey design was conducted to mimic the survey pattern conducted by the
SCUBA diver in order to maximise the SfM model comparisons.

Repeat surveys were conducted at depths of 18-21 m at Ganavan
Bay (56° 26'20” N, 5° 28’ 28” W) on 31st October and 7th November
2018 and 6-8 m at Dunstaffnage Bay (56° 27’ 04" N, 5° 26’ 06” W) on
29th November 2018 (Fig. 2.), with horizontal visibility ranging from
2 to 5 m. The sea state was 3 or less on the Beaufort scale in both lo-
cations (UK Meteorological Office, 2021). The SCUBA diver surveys
were conducted on an ebbing tide in both locations.

Images were obtained by SCUBA diver and a ROV, both equipped
with a GoPro Hero 6 camera operated approximately 1 m above and at
an angle of incidence of approximately 90 degrees to the seabed. For
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the SCUBA survey, the camera was operated in time-lapse (0.5 s) mode,
capturing high definition (12 MP) images, together with two Weefine
smart focus video lights (3000 Im each), illuminating the seafloor. The
ROV survey was conducted with a battery powered BlueROV2 equipped
with 6 T200 thrusters and maximum forward speed of 1 m/s (2 knots),
capturing live 1080p HD video with a Hitech Hs-5055MG tilt servo ca-
pable of 110 degree field of view and +/-90 degree camera tilt, illu-
minated by 4 x 1500 Im lights with dimming control and 135 degree
light beam angle. The onboard ROV camera was used for real time navi-
gation only. Survey images were captured with a Go-pro Hero 6 camera
attached to the ROV capturing high quality 4 k video, utilising the ROV
lighting. Lighting was set to either 75% or 100% depending on seabed
conditions. The 4 k resolution video was then segmented into high qual-
ity portable network graphics (PNG) image files.

Operating the GoPro cameras at a standard (4 X 3) format with no
zoom delivers a field of view of 94.4 (vertical — y axis) and 122.6 (hor-
izontal — x axis). Under water at a height of ~1 m, this equates to
~1.38 m in the Y axis and ~2.52 m in the X axis giving an area of view
~3.49 m2. An individual scallop would occupy ~1% of the area of view.

The high-quality PNG video stills were converted to Joint Photo-
graphic Experts Group (JPEG) format. All images were analysed on VI-
AME open access software. A total of 3070 images were randomly se-
lected from an image set of 32,645 images for this experiment and an-
notated by two annotators, who did not have any knowledge about the
study and the purpose of the annotation and worked independently from
each other. Two sets of independent annotations were required to cal-
culate the agreement between the annotators, assess the quality of their
work and the difficulty of the task. If the agreement between annotators
is low, it indicates the task is too difficult or the quality of the annota-
tions is low. If the agreement is high, then the ground truth dataset can
be composed of the annotations on which both annotators agree and it
will have a higher quality than if produced by one annotator.

The annotators selected images containing scallops using the “Anno-
tation” and “Create Single Frame Tracks” tools in the VIAME “Tools”
menu (VisGUI View version 2.0.0). A bounding box was drawn around
each scallop in the image. Each bounding box was represented by X and
Y pixel coordinates of its upper left and bottom right corners. The coor-
dinate data from all bounding boxes were collated in the software and
exported as a comma separated value (CSV) file for analysis.

A random selection of 50 annotated images were reviewed by a com-
puter vision expert (author KO) in order to provide estimates of obvious
errors in annotations made by the annotators.

The annotations were used to create a ground truth dataset that was
then used to evaluate existing scallop detectors and train new detectors.

For the purposes of comparison, the annotated image files were sub-
divided on the basis of location (two bays, reflecting differences in depth
and habitat) and collection method (SCUBA diver or ROV).

3. Theory/calculation
3.1. Scallop detection algorithms in VIAME

VIAME scallop detectors are based on Convolutional Neural Net-
works. The existing VIAME models have been trained on the imagery
collected by Coonamessett Farm Foundation (CFF) in 2017, 2018, and
2019, as well as the HabCam 2015 dataset provided by Northeast Fish-
eries Science Center (NEFSC). In total, there are about 150,600 anno-
tated standard living Atlantic Sea scallops (Placopecten magellanicus) in
these images, 6342 swimming scallops, 978 dead scallops, and 1137
clappers (dead scallops where the valves are still attached to each
other). The dataset also contains other annotated species, such as flat-
fish, lobster, monkfish, squid, sea star, skate, etc. In the experiment de-
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Fig. 2. ‘io= ‘e 2 Maps showing survey sites 1. Ganavan and 2. Dunstaffnage Bay.

scribed here two VIAME models, YOLO and NetHarn trained for P. mag-
ellanicus were compared using P. maximus as the detection target.

3.1.1. YOLO model

The YOLO version 2 network (https://pjreddie.com/darknet/
yolov2/; (Redmon and Farhadi, 2016) is a CNN that divides an im-
age into regions and predicts bounding boxes and probabilities for each
region. Unlike other models that are applied to an image at multiple lo-
cations and scales, YOLO looks at the whole image so its predictions are
informed by global context in the image. YOLO architecture makes use
of only convolutional layers, making it a fully convolutional network. It
has 75 convolutional layers, with skip connections and upsampling lay-
ers.

YOLO uses convolutional weights that are pre-trained on ImageNet
(http://www.image-net.org/). In the current study, the model was then
trained on the scallop images P. magellanicus.

3.1.2. NetHarn model

This model was trained using a Cascade Faster-RCNN (Cai and Vas-
concelos, 2018; Chen et al., 2019)with a parameterized fit harnesses
NetHarn for augmentation (https://gitlab.kitware.com/computer-
vision/netharn).

In object detection, the intersection over union (IoU) threshold is
frequently used to define positives/negatives. The threshold used to
train a detector defines its quality. While a low threshold leads to noisy
(low-quality) detections, for higher thresholds detection performance
usually degrades. The main reason for it is overfitting, due to vanishing
positive samples with smaller IoU values. Cascade R-CNN is designed to
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address this problem. Cascade R-CNN consists of a sequence of detectors
trained with increasing IoU thresholds, to be sequentially more selective
against close false positives. The detectors are trained stage by stage, so
that the output of a detector is a good input for training the next higher
quality detector.

In computer vision, the process of augmentation is often applied to
enhance incomplete training datasets. Through various strategies such
as cropping, rotating, and flipping images, an existing dataset can be ex-
panded in order to train an Al model on more examples. The NetHarn
model employs ~20 types of augmentation, including additive gauss-
ian noise, median blur, coarse dropout etc. (https://github.com/aleju/
imgaug).

For this study, two versions of this model were explored: trained for
one class (P. magellanicus - scallop) and for four classes (P. magellanicus -
clapper, dead scallop, standard alive scallop, swimming scallop, flatfish
- which included images of rays and sole). The four class model was first
trained to detect all possible species in the dataset (including sea star,
squid, lobster, etc.) and then fine-tuned for the four classes of interest.
Given the four classes model, we considered detections from all classes
except flatfish to be relevant detections.

3.2. Confidence threshold selection

For each image, a given detector outputs a set of bounding boxes
(coordinates of the top left and bottom right corners) with their confi-
dence scores ranging from O to 1. In order to select a threshold for con-
fidence scores for each detector, the ground truth dataset was randomly
split into 10 equal parts. For each part, the confidence thresholds rang-
ing from O to 1 were tested with a step of 0.01 and the threshold giving
the highest F1 score value was selected. The final confidence threshold
was averaged over 10 runs.

3.3. Detector training

The best network in VIAME was selected based on the performance
of the corresponding model and trained with P. maximus images (See
Table 1).

Images were randomly split in the annotated dataset into “train”
(90%) and “test” (10%). The train dataset was used to a) train a new
model initiated with weights pre-trained on the Common Objects in
Context dataset (https://cocodataset.org), b) fine-tune an existing best
performing VIAME model. The performance of the initial, trained, and
fine-tuned models was evaluated on the test dataset consisting of 208
images. Out of these images, there were 138 (66%) ROV and 70 (34%)
SCUBA images and 108 (52%) of images from Ganavan and 100 (48%)
from the Dunstaffnage Bay.

3.4. Evaluation

For evaluation of the results, precision, recall, F1 score, and mean
average precision measures were used (Everingham et al., 2010).

Precision (P) is defined as a percentage of the predicted scallops that
are correct, i.e. correspond to the ground truth. Recall (R) is defined as a
percentage of the ground truth scallops that are predicted correctly (see
Fig. 4).

The F1 score is the harmonic mean of the precision and recall de-
fined as follows:

Fl=2 LR
P+R
The highest possible value of an F1 score is 1, indicating perfect pre-
cision and recall, and the lowest possible value is 0, if either the preci-
sion or the recall is zero.
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If the predictor produces a confidence score, then a threshold on this
score can be used to filter out unreliable predictions.

Correct prediction is defined using the Intersection over Union (IoU)
score, see Fig. 4. Given two bounding boxes, i.e. a predicted box (PB)
and a ground truth box (GB), IoU is defined as follows:

ToU Overlap area of PB and GB
oU =
Union area of PB and GB

A prediction is defined as correct if its IoU with any of the ground
truth boxes is > 0.5.

Following the standards for PASCAL VOC (2021; http://host.
robots.ox.ac.uk/pascal/VOC/) object detection challenges (Evering-
ham et al., 2010), the mean average precision (mAP) was calculated,
which computes the average precision value for recall levels ranging
from O to 1 with step 0.1. Formally, mAP is defined as follows.

1

mAP = _1 Pinterp ()

r€{0,0.1....,0.9,1}

where Pjyr,(r) is interpolated precision for recall level r computed as
follows.

P (r) = max P ()

interp i >r

where P(r') is measured precision at recall r’.
4, Results
4.1. Ground truth annotations

For the selected 3070 files, annotator 1 and annotator 2, annotated
2098 and 3048 files, respectively. The number of matched bounding
boxes between them with an IoU score of > 0.5 was 1747. Annotator 1
and annotator 2 provided 227 and 1417 unique unmatched bounding
boxes, respectively. This indicates a low agreement between annotators.

A total of 50 annotated images were selected randomly such that
each image contained at least one unmatched bounding box. These im-
ages were inspected manually by a computer vision expert (author KO).
Annotator 1 made 75 obvious errors in annotating the images (missing a
scallop or drawing a bounding box where there was no scallop), whereas
annotator 2 made only 2 errors. Annotator 2 therefore provided anno-
tations of much higher quality and on this basis. Because of the differ-
ence in the quality of the annotations, it was not possible to compose
the ground truth dataset using both annotations. Therefore annotations
for the 3048 files provided by annotator 2 were used as the ground truth
dataset.

4.2. Scallop detection

NetHarn_1_class outperforms other models in terms of F1l-score, re-
call, mAP, and the average difference of number of predicted vs an-
notated scallops in an image. The thresholds were selected automati-
cally as described above. For models NetHard_4_classes and YOLO, they
proved to be 0, which shows that the confidence measures were not
helping to remove wrong detections.

4.3. Comparison of survey methods

The ground truth data was divided based on 1) survey method
(SCUBA diver or ROV) and, 2) location, which also equates to depth,
Dunstaffnage (shallow 6-8 m) and Ganavan (deep 18-21 m). The best
model (NetHarn_1_class) was evaluated separately for the two survey
image capture methods as well as for the two locations. The model
consistently performs better for the images collected by SCUBA diver
(Table 2). There is no difference in performance for the SCUBA diver
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Table
Table '_ L. luation of the VIAME NetHarn_1_class model for two combined survey and image acquisition methods and two locations: Number of images (#), Precision (P), Recall (R), F1
score, mAP.
ROV SCUBA Total
# P R F1 mAP # P R F1 mAP # P R F1 mAP
Ganavan 1226 0.78 0.52 0.62 0.56 432 0.89 0.9 0.89 0.89 1658 0.84 0.6 0.7 0.66
Dunstaffnage 761 0.79 0.82 0.80 0.72 633 0.9 0.93 0.91 0.89 1394 0.83 0.86 0.84 0.84
Total 1994 0.76 0.4 0.69 0.64 1065 0.9 0.91 0.91 0.89 3048 0.82 0.74 0.77 0.75

acquired images from Dunstaffnage and Ganavan. For ROV acquired im-
ages, recall is lower for Ganavan.

4.4. Trained detectors

The trained and fine-tuned models for P. maximus significantly out-
perform the initial NetHarn_1_class model trained for P. magellanicus
(Table 3). This result illustrates the importance, in this case, of training
a model with the target species and associated habitat.

4.5. Workflow

The workflow from image annotation through to model evaluation
and fine tuning is illustrated in Figs. 3&5.

4.6. Error analysis

To explain the difference in performance of the original VIAME
NetHarn_1_class model for the two image capture methods and two lo-
cations (Table 2), 50 images were randomly selected from each of the
four groups (200 images in total) and manually inspected independently
by two of the authors (KO and MJ). The purpose was to identify image
features resulting in false positives (automatic detections made but no
scallop annotated), false negatives (annotated scallops that were not de-
tected automatically). The authors (KO and MJ) also identified several
scallops missed by the annotator. False negatives mostly occur in less
well resolved and darker images (26 out of 29 mistakes in the inspected
images). False positive detections result from sand or stone formations,
algae, sea urchins and non-pectinid shells on the sea bed in the darker
images (20 out of 23 mistakes). Three scallops were found by the au-
tomatic detector, but missed by the annotator. Most of the images col-
lected in the ROV survey are dark and less sharp than SCUBA diver ac-
quired images due to the amount of fine particulate material suspended
in the water. The SCUBA diver survey images were generally sharper
and brighter. Manual inspection of the images did not inform our under-
standing of the reasons for higher recall for the ROV survey images from
Dunstaffnage, but it is likely that as this location was shallower, ambient
light levels are likely to be higher. In addition, the finer sediments found
at Ganavan may be more easily suspended by near seabed currents and
backwash from the ROV thrusters.

To analyse the errors of the best trained model (NetHarn_1_class_-
trained, Table 3), the detections for 208 images from the test set were
manually reviewed. In total, there were 9 undetected scallops (false neg-
atives). Most of them (7 out of 9) occurred in the dark and less well

resolved ROV survey images. Two scallops undetected in SCUBA diver
surveyed images were located at the border of the image. See examples
in Fig. 4.

The trained detector produced 8 false positives. Four false positives
result from sand or stone formations in the dark and less well resolved
ROV survey images. In SCUBA diver survey images, three out of four
false positives result from missing annotations and are thus no mistakes,
while one false positives is part of a degraded laminaria frond and stipe.
See examples in Figs. 6-8. Figs. 6-8

For three images in the test set, scallops were missed by both the
annotator and the automatic detector. See an example in Fig. 4(left).
Overall, the trained detector performed well even for dark and poorly
resolved ROV images, see an example in Fig. 4(right).

5. Discussion
5.1. Comparison of models

The images used in these analyses vary considerably with respect to
their quality and content. The seabed is heterogeneous, containing fea-
tures ranging from muddy sand to coarse sand and gravel, rocks, shell
material, seaweeds and metallic wreckage covered in fouling organisms.
Water clarity and light levels were also highly variable with the deeper
survey site tending to be both darker and less clear as a function of light
attenuation with water depth and finer sediment characteristics increas-
ing levels of suspended material. The scallops manually deposited along
the survey transect will not have had time to recess for the first SCUBA
diver survey and will therefore have been sitting proud of the surface of
the seabed with little or no sediment covering them. It is possible that
a small proportion of the scallops will have started to recess within two
hours (subject to substrate type for example) and these images would
have been captured using the ROV. For the second SCUBA diver sur-
vey at each location, approximately 5 h after the initial scallop place-
ment a greater proportion of the scallops would have recessed and been
partially covered with sediment, more closely mimicking their natural
state. The image classification algorithms have been exposed to a highly
variable set of images in terms of content and quality in which P. max-
imus may have appeared as clearly defined targets in terms of shape and
colour or in some cases, poorly resolved partial outlines with no colour
discernibly different from the surrounding seabed sediment. However,
it is estimated that only 20-25% of all specimens were fully recessed
(Boswarva pers com) which could increase the performance of the de-
tector and therefore its performance in habitats where the majority of
scallops are fully recessed needs to be assessed.

Table
Table iluation of the VIAME original NetHarn_1_class model, trained model, and fine-tuned model on the test dataset (208 images, 10% of the full dataset).
Model Precision Recall F1 score mAP Confidence threshold Average difference in number of predicted vs annotated scallops in image
NetHarn_1_class initial 0.9 0.71 0.79 0.69 0.36 0.51
NetHarn_1_class_trained 0.97 0.95 0.96 0.91 0.5 0.1
NetHarn_1_class fine-tuned 0.97 0.94 0.96 0.91 0.6 0.13
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Fig. 3. Fig +o° Architecture of Cascade Faster-RCNN as presented in (Cai and Vascon-
celos, 2018). “I” is input image, “BO” is region of interest proposals, “conv” is backbone
convolutions, “pool” is region-wise feature extraction, “H” is network head, “B” is bound-
ing box, and “C” is classification.

Of the three VIAME models initially tested, the NetHarn_1_class mod-
els proved to be the best, followed by YOLO. All the original VIAME
models were trained on the images of the P. magellanicus scallops, which
makes their application to the P. maximus species sub optimal. However,
since NetHarn includes many augmentation techniques to vary the train-
ing set, it can cover a larger variety of images. This is a possible expla-
nation for the NetHarn_1_class model significantly outperforming YOLO
(0.75 vs 0.52 mAP).

The NetHarn 4_classes model is an experimental model initially
trained to detect all possible species annotated in the dataset and then
fine-tuned for scallop and flatfish. This experiment has been performed
to get better base features for later fine-tuning across categories of in-
terest. In our experiment, this model performed significantly worse than
NetHard_1_class (0.75 vs 0.5 mAP). A possible explanation is that these
additional features introduced greater variation, reducing performance.

Our model trained specifically for P. maximus using the NetHarn_1_-
class network achieves the best results (0.96 F1 score and 0.91 mAP)
and significantly outperforms the initial NetHarn model trained for P.
magellanicus (0.91 vs 0.69 mAP). Interestingly, fine-tuning does not give
any advantage, which suggests that even a small training set may be suf-
ficient for training a high-quality detector.

5.2. Comparison of survey methods - diver vs ROV
The images used in this research were collected as part of another

project designed to acquire images and video from both SCUBA diver
and an ROV to develop SfM seabed photogrammetry.

Ecological Informatics xxx (XxxX) XXX-XXX

Whilst the project generated a large number of images (over 32,000)
suitable for assessing the performance of CNN detectors, the experimen-
tal design was not optimal for determining differences between survey
and image acquisition methods. The image acquisition method used the
same camera but with different light sources and image capture for-
mats. Diver survey images were captured as high resolution JPEG stills
(~4000 x 3000 pixels) whilst ROV survey images were extracted from
high resolution 4 K video as PNG images (~3840 x 2160 pixels). Both
PNG and JPEG are raster graphics formats but JPEG uses compression
algorithms to reduce image file size. PNG uses lossless data compres-
sion. JPEG images tend to provide smooth transitions of colours whereas
the PNG format is good for images with sudden changes in colour and
contrast. Whilst images were annotated at these resolutions, the VIAME
software automatically resamples all images to 512 X 512 pixels and
JPEG format prior to model analysis, thus it seems unlikely that image
resolution or format in this case will have impacted upon model perfor-
mance. Manual inspection of image quality suggests that the main dif-
ferences between those captured from the ROV and the SCUBA diver are
the brightness and resolution of detail of the images as a function of wa-
ter clarity and illumination.

The SCUBA diver was clearly able to maintain a more constant
(~1 m) distance from the seabed whilst keeping the camera angle rel-
atively perpendicular to the seabed. The ROV could not be controlled
manually to maintain the same level of consistency in distance from the
seabed and the angle of incidence of the camera used to capture images
was also much more variable than that achieved by the SCUBA diver
(Boswarva, pers com). The lower angle of incidence between the ROV
camera and the seabed increases the area and distance of view, reducing
the overall light intensity whilst increasing the potential amount of sus-
pended material between the camera lens and the subject.

The SCUBA diver survey involved hand holding a relatively small
GoPro camera with associated lights and conducting a boustrophodonic
survey pattern with frames being captured at a rate of 2 per second.
The automated rate of image capture and the speed of the diver was de-
signed to allow ~70% overlap in images. This process will tend to re-
duce the potential for human bias in image capture which could favour
the occurrence of the target species in these images when compared to
those captured with the ROV. The SCUBA diver will also tend to avoid
creating turbulence that would disturb the sediment and potentially ob-
scure the camera view. Although the ROV survey was designed to mimic
the boustrophodonic survey pattern of the diver, manual comparison of
the SCUBA diver vs the ROV captured images suggests that the ROV im-
ages in some cases may have been of lower quality as a result of sedi-
ment disturbance caused by backwash from the ROV propulsion system.

The difference in the performance of the trained NetHarn_classl
model on images collected by the ROV survey at Dunstaffnage Bay

Fig. 4 " re 4 In these examples, the ground truth box is yellow and the predicted box is red. For the left image, IoU = 0.54. For the right image, IoU = 0.72. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. re 5 Our workflow consists of three main steps: 1) ground truth (GT) generation, 2) model selection, and 3) training and evaluation of new models. For GT generation, scallop

images were annotated by independent annotators using the VIAME annotation GUI. Their annotations were assessed by a computer vision expert, which resulted in selecting annotations
for the final GT dataset. This dataset was then used to evaluate existing VIAME models YOLO and Netharn trained for P. magellanicus. The Netharn model proved to yield a better result.
The best confidence threshold for this model was selected. In the last step, the GT dataset was divided into the train and test datasets. The train dataset was used to train and fine-tune a
new NetHarm model for P. maximus. The new model yielded the best result of 0.91 mAP.

Fig. 6. re 6 Examples of false negatives (yellow bounding box) in ROV (left) and SCUBA (right) survey images. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

a b C

Fig. 7. °_ re 7 Examples of false positives: Poorly resolved ROV survey image (a), SCUBA diver survey image with a laminaria frond and stipe (b), SCUBA diver survey image with
two correct detections and an annotation missing for the left scallop (c). Red box = false positive. White box = true positive. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(0.72 mPA) and Ganavan (0.56mPA) appear to reflect the limitations of are more prone to disturbance and therefore near-seabed particulate
this survey method. Ganavan Bay (deep 18-21 m) is more than twice material is evidently greater. Combined with the potential for images
the depth of Dunstaffnage Bay (shallow 6-8 m) which means increased taken at a lower angle of incidence to the seabed these factors would
attenuation of light with depth and therefore significantly less ambient combine to amplify not only the lower performance of the ROV

light. The finer sediments and exposed nature of the Ganavan Bay site
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Fig. ¢ ire 8 Example of missing detection and annotation (green bounding box) (left) and correct detections (white bounding boxes) in a dark and poorly resolved ROV survey image
(right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

recorded images between the two survey sites but also the differences
between the survey methods.

With respect to image acquisition, the results of this research suggest
that relatively low cost camera technology such as a GoPro and asso-
ciated lighting, recording still images with sufficient frequency to pro-
vide a statistically meaningful coverage of seabed area could be used to
assess P. maximus densities in situ, subject to any specified depth/pres-
sure limitation on the technology. At a height of ~1 m above the seabed
with the camera oriented perpendicular to the seabed, this technology
can provide images of sufficient quality to permit a detector such as the
NetHarn_1_class model to perform well. Either as part of a simple drop
down camera setup, a towed sledge or, for example, a passive wing de-
signed to “fly” a required distance above the seabed.

In some situations recessed P. maximus are more visible when viewed
at an oblique angle because the gaping valves of the shell reveal the
mantle tissues and eye spots that can reflect light and stand out from the
background.

A 90 degree or perpendicular angle of incidence does not describe
the nature of the image captured. The camera used has a lens with a
field of view of 130 degrees in wide angle mode. Whilst the light paral-
lax caused by being underwater will reduce the field of view by approx-
imately a third, the angle of incidence between the lens and the subject
will generally be less than 90 degrees. In practical terms this means that
scallops nearer the outer range of the field of view will not be seen di-
rectly from above but at a slight angle which may be sufficient to pick
up the edge of the gapping scallop shell. An important factor in trying
to define practical optima for camera angle and height above the sea
bed is the degree to which particulate material suspended in the wa-
ter obscures the image. The lower the angle of incidence for any given
height above the seabed, the greater the distance between the lens and
the subject and thus the greater potential for suspended sediment to ob-
scure the image of the subject. To compensate for this, the camera could
be used closer to the seabed, therefore reducing the lens to subject dis-
tance but this would also reduce the area of the seabed being sampled
in each image. The height of approximately 1 m above the seabed for
image acquisition was chosen based on experience of local conditions
at the sample sites. In waters with greater clarity it would be possible
to increase the lens to subject distance and it would certainly be worth-
while to undertake controlled tank experiments to try to optimise lens
to subject distance and angle of view. The fact that images of recessed
P. maximus captured at the Dunstaffnage sample site, which is prone to
poor visibility, could still be reliably identified by the detector suggest
that the method, if validated on a larger dataset of fully recessed speci-
mens, could be robust.

5.3. Model performance

The fact that the trained NetHarn_1_class model yielded a combined
survey and image acquisition detection performance of 0.91 mPA which
included 66% of the lower quality images derived from the ROV sur-
veys is very encouraging. The heterogeneous and somewhat challeng-
ing nature of the images from different locations, depths and seabed
habitats also suggests that this model is worthy of further investigation.
However, the results obtained with the trained model can potentially be
over-optimistic as the annotated dataset is small, the training and test-
ing images are relatively similar. Although no images within the data set
repeat, many images show the same scallops in the same location with
the same lighting conditions. The present study should therefore be con-
sidered as a pilot and the NetHarn_1_calss model needs to be retrained
on a larger dataset. The results of this project provide a strong basis on
which to recommend the collection of a larger annotated data set of P.
maximus in a fully recessed state, which would not contain images of the
same individuals and use the image acquisition method outlined.

5.4. Comparison with related work

Various automated detection methods for identifying scallops in
their natural environment have been explored (Dawkins, 2011;
Dawkins et al., 2013; Enomoto et al., 2009, 2010; Fearn et al.,
2007; Kannappan and Tanner, 2013; Rasmussen et al., 2017).
However, a fair comparison with the related work is difficult, because
every study uses different datasets. The best Atlantic scallop detector of
the Rasmussen et al., 2017, study employing YOLOv2 achieves 0.85
mAP, while our best detector is yielding 0.91 mAP. Dawkins et al.,
2013, report Atlantic scallop detection precisions ranging from 0.28 to
0.99 and recalls ranging from 0.69 to 0.94 with their best detector, de-
pending on which dataset it was tested on. Their best results are similar
to our results obtained with NetHarn_1_class_trained (precision 0.97 and
recall 0.95). Other related work mentioned above does not follow stan-
dard computer vision metrics for object detection making comparison
more difficult. Kannappan and Tanner, 2013, report only precision of
0.9 for Atlantic scallop detection. Enomoto et al., 2010, do not report
precision, but accuracy of 0.86 for Mizuhopecten yessoensis scallop detec-
tion. Fearn et al., 2007, do not develop a ground truth dataset and
do not provide a quantitative evaluation of their approach to Tasmanian
scallop detection.
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6. Conclusions

The NetHarn_1_class model trained with the P. maximus annotated
dataset can be reliably used to estimate the number of scallops in the
images. Furthermore, using a small annotated dataset for training can be
sufficient to obtain a high quality detector for P. maximus and presum-
ably other similar species. Using the model to explore differences be-
tween the survey and associated image acquisition methods can inform
improvements in survey methodology and, in this case, point towards
the potential to use relatively inexpensive technology to achieve the re-
quired image quality for reliable detection. To improve and validate the
performance of the model for operational use in estimating scallop den-
sities, a larger set of annotated images of P. maximus fully recessed is
now required.
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